导航:首页 > 数字科学 > 古建筑运用了哪些数学知识

古建筑运用了哪些数学知识

发布时间:2023-08-04 14:08:07

❶ 长城的建造运用了哪些数学原理

有对称,几何,两点一线,

❷ 有哪些很好地体现了数学美的建筑

比如说比萨斜塔,就很好的体现了数学美的建筑,它的整个体型是倾斜的,给人一种非常危险的感觉,但是非常美。

❸ 这座塔运用了哪些数学或几何的原理/应用/知识

位于欧洲南部的希腊,是着名的欧洲古国,几何学的故乡。这里的古人提出的三大几何难题,在科学史上留下了浓浓的一笔。这延续了两千多年才得到解决的世界性难题,也许是提出三大难题的古希腊人所不曾预料到的。

三大难题的提出

实际中存在着各种各样的几何形状,曲和直是最基本的图形特征。相应地,人类最早会画的基本几何图形就是直线和圆。画直线就得使用一个边缘平直的工具,画圆就得使用一端固定而另一端能旋转的工具,这就产生了直尺和圆规。

古希腊人说的直尺,指的是没有刻度的直尺。他们在大量的画图经历中感觉到,似乎只用直尺、圆规这两种作图工具就能画出各种满足要求的几何图形,因而,古希腊人就规定,作图时只能有限次地使用直尺和圆规这两种工具来进行,并称之为尺规作图法。

漫长的作图实践,按尺规作图的要求,人们作出了大量符合给定条件的图形,即便一些较为复杂的作图问题,独具匠心地经过有限步骤也能作出来。到了大约公元前6世纪到4世纪之间,古希腊人遇到了令他们百思不得其解的三个作图问题。

三等分角问题:将任一个给定的角三等分。

立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。

化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。

这就是着名的古代几何作图三大难题,它们在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。

貌以简单其实难

从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,2000多年来从事几何三大难题的研究颇不乏人。也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等等。可是,所有这些方法,不是不符合尺规作图法,便是近似解答,都不能算作问题的解决。

其间,数学家还把问题作种种转化,发现了许多与三大难题密切相关的一些问题,比如求等于圆周的线段、等分圆周、作圆内接正多边形等等。可是谁也想不出解决问题的办法。三大作图难题就这样绞尽了不少人的脑汁,无数人做了无数次的尝试,均无一人成功。后来有人悟及正面的结果既然无望,便转而从反面去怀疑这三个问题是不是根本就不能由尺规作出?

数学家开始考虑哪些图形是尺规作图法能作出来的,哪些不能?标准是什么?界限在哪里?可这依然是十分困难的问题。

高斯的发现

历史的车轮转到了17世纪。法国数学家笛卡尔创立解析几何,为判断尺规作图可能性提供了从代数上进行研究的手段,解决三大难题有了新的转机。

最先突破的是德国数学家高斯。他于1777年4月30日出生于不伦瑞克一个贫苦的家庭。他的祖

父是农民,父亲是打短工的,母亲是泥瓦匠的女儿,都没受过学校教育。由于家境贫寒,冬天傍晚,为节约燃料和灯油,父亲总是吃过晚饭就要孩子睡觉。高斯爬上小阁楼偷偷点亮自制的芜菁小油灯,在微弱的灯光下读书。他幼年的聪慧博得一位公爵的喜爱,15岁时被公爵送进卡罗琳学院,1795年又来到哥庭根大学学习。由于高斯的勤奋,入学后第二年,他就按尺规作图法作出了正17边形。紧接着高斯又证明了一个尺规作图的重大定理:如果一个奇素数P是费尔马数,那么正P边形就可以用尺规作图法作出,否则不能作出。

由此可以断定,正3边、5边、17边形都能作出,而正7边、11边、13边形等都不能作出。

高斯一生不仅在数学方面做出了许多杰出的成绩,而且在物理学、天文学等方面也有重要贡献。他被人们赞誉为“数学王子”。高斯死后,按照他的遗愿,人们在他的墓碑上刻上一个正17边形,以纪念他少年时代杰出的数学发现。

最后的胜利

解析几何诞生之后,人们知道直线和圆,分别是一次方程和二次方程的轨迹。而求直线与直线、直线与圆、圆与圆的交点问题,从代数上看来不过是解一次方程或二次方程组的问题,最后的解是可以从方程的系数(已知量)经过有限次的加、减、乘、除和开平方求得。因此,一个几何量能否用直尺圆规作出的问题,等价于它能否由已知量经过加、减、乘、除、开方运算求得。这样一来,在解析几何和高斯等人已有经验的基础上,人们对尺规作图可能性问题,有了更深入的认识,从而得出结论:尺规作图法所能作出的线段或者点,只能是经过有限次加、减、乘、除及开平方(指正数开平方,并且取正值)所能作出的线段或者点。

标准有了,下来该是大胆探索、细心论证。谁能避过重重险滩将思维贯通起来,谁就是最后胜利者。1837年,23岁的万芝尔以他的睿智和毅力实现了自己的梦想,证明了立方倍积与三等分任意角不可能用尺规作图法解决,宣布了2000多年来,人类征服几何三大难题取得了重大胜利。

他的证明方法是这样的:

假设已知立方体的棱长为a,所求立方体的棱长为x,按立方倍积的要求应有x3=2a3的关系。所以立方倍积实际是求作满足方程x3-2a3=0的线

了有理数加、减、乘、除、开方的运算范围,超出了尺规作图准则中所说的数量范围,所以它是不可能解的问题。

用类似地想法,他证明了三等分角也是不可能解的问题。实际上万芝尔还证明了一个被称为高斯——万芝尔定理:如果边数N可以写成如下形式N=2t·P1·P2……Pn,其中P1、P2、…Pn都是各不相同的形如22k+1的素数,则可用尺规等分圆周N份,且只有当N可以表成这种形式时,才可用尺规等分圆周N份。根据这一定理,任意角的三等分就不可能了。

1882年,德国数学家林德曼借助于eiπ=-1证明了π的超越性,从而解决了化圆为方

的问题。假设圆的半径为r,正方形的边长为x,按化圆为方数代数方程的根,更不能用加减乘除开平方所表示,因而不可能用尺规法作图。

从此,古典几何的三大难题都有了答案。

2000多年来,一代接一代地攻克三大难题,有人不禁要问这值得吗?假如实际中真遇到要三等分角、立方倍积、化圆为方,只要行之有效,何苦一定用尺规作图法解决?其实,数学研究并非一定要实用,数学家对每一个未知之谜都要弄个清楚,道个明白,这种执着追求的拗劲正是科学的精神。更为重要的是,对三大难题的研究,反过来促进了数学的发展,出现了新的数学思想和方法,例如阿基米德、帕普斯发现的三等分角的方法,勃洛特用两块三角板解决立方倍积问题,等分圆周、作正多边形,高斯关于尺规作图标准的重大发现等等。每一次突破不仅是人类智慧的胜利,使数学园地争奇竞艳,而且有利于科学技术的发展。

特别值得提到的是,在三大几何难题获得解决的同时,法国数学家伽罗瓦从一般角度对不可能性问题进行研究,在1830年,19岁的伽罗瓦提出了解决这一类问题的系统理论和方法,从而创立了群论。群论是近世抽象代数的基础,它是许多实际问题的数学模型,应用极其广泛,而三大几何作图难题只不过是这种理论的推论、例题或习题。所以,一般认为三大难题的解决归功于伽罗瓦理论,可伽罗瓦理论是在他死后14年才发表的,直到1870年,伽罗瓦理论才得到第一次全面清楚的介绍。

❹ 有哪些建筑运用了数学知识

建筑学都运用了什么数学知识:三角函数,勾股定理,面积、体积公式,两点间的直线距离等.
就开课来说 有高等数学 阴影透视 立体几何 建筑力学 不过做设计时算面积就一般的数学就可以

❺ 哪些建筑的外形是用数学建造的

力学是数学科学的乐园,因为我们在这里获得数学的果实。──伦纳多·达·芬奇

几千年来,数学一直都在建筑的设计和建造上发挥着重要的作用。数学一直就是建筑设计思想的一种来源,也是建筑师用来得以排除建筑上的试错技术的手段。在建筑中能够用到的数学概念有角锥、棱柱、黄金矩形、视错觉、立方体、多面体、网格球顶、三角形、毕达哥拉斯定理、正方形、矩形、平行四边形、圆、半圆、球,半球、多边形、角、对称、抛物线、悬链线、双曲抛物面、比例、弧、重心、螺线、螺旋线、椭圆、镶嵌图案、透视等。这些东西可能看来内容丰富,但实际上只不过是用在建筑上的数学概念的一部分。

影响一个建筑设计的因素有它的周围环境、材料的可得性和类型,以及建筑师的想象力和智谋。在此举一些历史上的例子加以说明。

为建造金字塔,要计算石块的形状、大小、数量和排列等工作,而这些就要依靠数学中有关直角三角形、正方形、毕达哥拉斯定理、体积和估计等知识。

据考古学家估计,埃及胡夫大金字塔约由230万块石块砌成,平均每块石块就重达2.5吨,而大的甚至超过15吨。在四千多年前生产工具很落后的中古时代,这些石块是怎样采集、搬运的呢?又是如何用这些巨石垒成如此宏伟的大金字塔呢?这一直都是个十分难解的谜。

约翰·泰勒是位天文学和数学的业余爱好者,他针对大金字塔的成因研究了许多文献资料。经过计算,他发现胡夫大金字塔包含着许多令人难以置信的数学原理。他首先注意到胡夫大金字塔底角不是60°。而是51.51',从而发现每壁三角形的面积等于其高度的平方。另外,塔高与塔基周长的比就是地球半径与周长之比,因而,用塔高来除底边的2倍,即可求得圆周率。泰勒认为这个比例绝对不可能只是个偶然,这说明了在中古时代的古埃及人就已经知道了地球是圆形的,同时也知道地球半径与周长之比。

在秘鲁古迹马丘比丘的设计和规则中,如果不用几何计划是不可能建造成功的。

希腊的巴台农神庙的构造利用到数学中黄金矩形、精密测量和将标准尺寸的柱子切割成呈精确规格等知识。

埃皮扎夫罗斯古剧场的布局和位置都是利用几何精确性专门计算而来的,以此来提高音响效果,同时也能使观众的视域达到最大。

意大利的古罗马斗兽场的建筑外形采用圆、半圆、半球和拱顶的创新用法,体现了许多数学思想。

拜占庭时期的建筑多是将正方形、圆、立方体和半球的概念与拱顶完美地结合起来,和君士坦丁堡的圣索菲亚教堂如出一辙。

文艺复兴时期的建筑结构以对称居多,在对称方面所显示出的精心设计,是依靠明和暗、实和虚来实现的。

今天,尽管许多新的建筑材料相继发现,但人们都能运用一些新的数学思想来使这些材料的潜力发挥到最大。利用品种繁多的现成建筑材料──石、木、砖、混凝土、铁、钢、玻璃、合成材料(如塑料)、钢筋混凝土、预应力混凝土,建筑师们实际上已经能设计任何形状。我们现在已经目睹了各种构造:双曲抛物面、富勒的网格结构、抛物线飞机吊架和一些模仿游牧民帐篷的立体合成结构、支撑东京奥林匹克体育馆的悬链线缆索,这些建筑的构造无不体现了数学思想。

建筑是一个在不断进展的领域,各个国家的建筑师们都在研究、改进或者再利用过去的思想,同时创造出一些新的思想。归根到底,建筑师在进行任何想象和设计时,都要有支持其设计结构的数学和材料。

阅读全文

与古建筑运用了哪些数学知识相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:700
乙酸乙酯化学式怎么算 浏览:1369
沈阳初中的数学是什么版本的 浏览:1315
华为手机家人共享如何查看地理位置 浏览:1007
一氧化碳还原氧化铝化学方程式怎么配平 浏览:845
数学c什么意思是什么意思是什么 浏览:1366
中考初中地理如何补 浏览:1256
360浏览器历史在哪里下载迅雷下载 浏览:667
数学奥数卡怎么办 浏览:1346
如何回答地理是什么 浏览:987
win7如何删除电脑文件浏览历史 浏览:1018
大学物理实验干什么用的到 浏览:1445
二年级上册数学框框怎么填 浏览:1657
西安瑞禧生物科技有限公司怎么样 浏览:812
武大的分析化学怎么样 浏览:1209
ige电化学发光偏高怎么办 浏览:1298
学而思初中英语和语文怎么样 浏览:1603
下列哪个水飞蓟素化学结构 浏览:1384
化学理学哪些专业好 浏览:1449
数学中的棱的意思是什么 浏览:1015