导航:首页 > 数字科学 > 数学五年级下册数学广角如何学

数学五年级下册数学广角如何学

发布时间:2023-08-04 18:37:00

① 小学数学广角找次品教学设计

现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。接下来我为你整理了小学数学广角找次品教学设计,一起来看看吧。

小学数学广角找次品教学设计(一)

教学内容:

新人教版小学五年级数学下册第八单元《数学广角———找次品》

教学目标:

1、通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。

2、学习用图形、符号等直观方式清晰、简明地表示数学思维的过程,培养逻辑思维的能力。

3、通过解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

教学重、难点:

让学生经历“比较——猜想——验证”的过程,寻求找次品的最优策略。

学情分析:

“找次品”的教学内容在“奥数”活动中时有出现,用图形帮助思考,对培养学生动手能力和思维能力都是比较好的,学生虽然是初次接触,但只要通过动手实践、小组讨论、探究等方式来解决问题,掌握一题多解的方法还是不难的。关键是最优化的解决策略,学生总结方法时有些难度,教师要适时引导。

教学过程:

一、弄清问题题意,激发探究欲望

师:今天这节课,我们就从某公司招聘员工的一道题目开始,假定你就是应聘者,想不想接受一下智慧的挑战?(出示课件)

问题是:假如你有81个外观完全一样的玻璃球,其中有一个球比其它的球稍轻,属于次品,如果只能利用没有砝码的天平来断定哪一个球轻,请问你最少要称几次才能保证找到较轻的那个球?

(一分钟思考)学生汇报:1次丶2次⋯…

师:请只用1次的同学说一说,你是怎样想的?

生1:

生2:

师:看来,1次虽少,但只是有可能,不能保证找到那个次品球,所以我们在思考这个问题的时候,不光要最少,还要以保证能找到为前提。

师:如果以“保证能找到”为前提,在同学们这么多的答案中,哪个次数是最少的呢?这一节课我们就一起来研究这个问题一一找次品。

二、简化问题,经历问题解决基本过程。

对于从81个小球中找次品的问题,比较复杂,那么怎样开始我们今天的研究呢?

生:可以从最少的试一试。

师:如果从最简单的入手研究,2个小球至少称几次?

生:1次。

师:如果是3个呢?

生猜测:2次?3次?1次?

师:老师这里有3瓶口香糖,其中有一瓶少了3粒,你觉得应该怎样称?

生汇报:先把其中的2瓶放在天平的两侧,如果左边下沉,就说明右边的是次品;如果右边的下沉,就说明左边的是次品;如果天平平衡,则没称的是次品。(学生边说老师边配合进行称量演示。)

师边演示课件边带领学生进一步感受推理过程:虽然有3瓶,而天平只有两个托盘,但是只需要把其中的2瓶放在天平的两侧,可能平衡,也可能不平衡,如果平衡⋯⋯如果不平衡⋯⋯不论是否平衡,利用推理,只要称1次肯定能将那个次品找出来。

师小结:看来2个和3个虽然数量不同,但是都只称1次就可以将次品找到。(将探究结果记录在表格中)

三、再次探究“关键数目”,初步感知、归纳规律

1、探究4个小球的情况。

(1)师:如果再增加一个球,现在有4个球,其中有一个是次品,一次可以保证找到次品吗?

生猜测:4次?3次?⋯⋯

师:纸上得来终觉浅,绝知此事要躬行。咱们还是亲自动手探究一下吧。请同学们与自己的同桌共同讨论一下。可以借用小方块摆一摆,也可以在纸上画一画,不论用什么样的方式,都要将思考过程简要记下来。

(生分组研究)

师:4个小球时,你们称了几次?

(生边汇报师边板书枝状图)

师:4个球有两种不同的测量方法,但结果测量的次数都一样,至少要2次才能保证找出次品。(把结果记录在表格中)

师:如果球的个数再多一些,例如9个,至少需要几次才能保证找出次品呢?请同学们用学具摆一摆,用笔画一画。

(生汇报师出示课件)

师:为什么把9个球分成(3,3,3)只要2次就可以找到次品呢?

(引导学生发现规律,把结果填入表格中)

师:4个球只需要2次就可以保证找到次品,9个球也只需要2次就能保证找到次品,那么大胆猜测一下,在4与9之间的5、6、7、8个球,至少需要几次就能找出次品呢?⋯⋯现在我们分组来研究一下:第1大组的同学研究5个小球的情况,依次研究6、7、8个球。

(生汇报,重点是8个球)(把结果填入表格中)

师:我们来比较一下,我们将8个小球分成(3,3,2)三组称2次,可是把8个小球分成(4,4)两组却称了3次,多称了1次,多称的1次多在哪儿呢?

生:小球数是2和3个时只用一次,把8分成(3,3,2)每组是3个或2个,3个或2个都只需要称1次就能找到次品。

师:你们明白他的意思吗?你们看,称(3,3)或(4,4),都只称1次就能确定次品在哪边,可是接下来,第一种是在3个或2个里找,只需一次,第二种要在4个里找,要用2次,所以会多一次。

师:大家最后称的次数不同,原因是什么呢?

生:分的组数不同,每组数量也不同。

师:那到底怎么分,才能既保证找到次品,又能使称的次数尽可能少呢?

(生分组讨论后汇报)

生1:应该分3组,因为天平有2个托盘⋯⋯

生2:每组的数目还要少。

生3:尽可能让每组数目比较接近,每次称完,次品就被确定在更小的范围内。

师:你们太了不起了,通过我们刚才的试验、讨论、交流,不仅解决了问题,而且发现了其中分组的秘密规律。

(师板书:分3组,尽量平均分。)

四、进一步发现规律

师:现在我们就应用分组的规律,再来一次实验,如果小球个数是10个(课件),该怎么分?称几次?

(生汇报,师板书:10(3,3,4)3次)(课件)

师:如果是27个呢?(课件)

(生汇报,师板书:27(9,9,9)3次(课件)

师:这位同学说的太好了,他先是分成了3组,然后用转化的思想把问题变成我们前面解决的9个小球的找次品问题了。

看来大家都掌握了分组规律。最开始的招聘问题,81个小球,大家能解决了吗?谁有了答案?把结果直接写在黑板上。

(生讨论并汇报结果)(课件)

师:你能发现它和前面我们解决的27个,9个,3个,有什么关系吗?

(小组研究)

生汇报:被测小球数目是几个3相乘就称几次,比如4个3相乘是81,81个小球就只需称4次。

师:你们很了不起,既解决了公司“招聘”问题,又发现了“被测物品数目与称的最少次数之间”神秘的规律。

五、课堂小结

随着招聘问题的解决,今天的课也即将结束,回顾我们整节课的经历,从最初的招聘问题,回归到解决2、3的问题,再到研究8、9发现分组规律,直至研究了更大的数目,像27、81这样的数目,发现了被测物品数目与称的最少次数之间的一些关系。

在这一路的探究过程中,我们不断思考,不断实践,不断发现,我想大家在收获知识的同时,一定收获了更多的智慧。最后有两句话与大家共勉:(课件出示)

探究问题,学会化繁为简

解决问题,要有优化意识

② 小学数学教学中如何处理数学广角

把握目标 突出主体 有效提升

——浅谈《数学广角》的教学

[摘要]数学广角教学的关键是对学生进行数学思想方法的渗透,目的是培养学生的思维及解决实际问题的能力。在教学中把握准教学目标,注重学生的主动建构,注重学生的自主探索,注重学生的交流讨论,让学生经历数学知识的形成过程,突出主体,巧用素材,有效提升,为学生的终身发展奠定基础。

[关键词] 目标 主体 提升

“数学广角”是人教版小学数学实验教材新增加的板块,这块新内容许多执教教师都感到比较迷茫,迷茫于编者的意图,迷茫于教学目标的把握,迷茫于教学方法的选择,迷茫于内容的处理,迷茫于过程的展开,迷茫于……。再加上从总体上来说,《数学广角》的内容不列入期末考试的范畴,所以有的教师就蜻蜓点水,一带而过,有的教师又因为学校要进行竞赛,又上成奥数课。《数学广角》究竟如何去教学呢?

一、恰当要求,把握目标

教学目标是课堂教学的灵魂,它既是教学的出发点,又是教学的归宿。因此,教学目标的制定是否恰当,直接决定着教学过程中目标的达成度,也将直接决定一堂课的教学效果。教参上也说每一册数学广角单元的安排,主要都是通过简单的事例渗透一些重要的数学思想方法,或者介绍一些比较着名的数学问题,让学生在解决这些问题的过程中能主动尝试从数学的角度运用所学知识和方法寻找解决问题的策略,培养学生解决实际问题的实践经验和能力。最重要的目的是让学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。根据这一些,我们既不能拔高要求,脱离轨道,也不能降低要求,敷衍了事。

在一次乡镇一级教研活动中,有一位教师在教学二上的排列组合时,她是这样教学的:先通过老师与一个学生的握手,需要握一次;然后小组合作,试一试3人要握几次,通过老师的引导得出3个人握手的次数可以用算式2+1=3来计算,4个人的握手先通过小组合作,在指名上来表演,又得出可以用算式3+2+1=6表示;5个人呢,引导学生可以用自己喜欢的数字、图形、字母等表示人,再用连线表示握手的次数,又得出5个人的握手可以用4+3+2+1=10表示;接下来通过找规律得出6个人的握手次数是5+4+3+2+1=15,并进行了验证;根据这样的规律,那7个人、8个人、全班呢?通过引导,学生列出了相应的式子。最后老师总结:今天学的就是《握手中的数学问题》。她这节课把教学目标定为让学生通过观察、操作、讨论等活动,建立握手中的数学问题的模型,然后运用这个模型来应用。这样的目标和教学设计就拔高了教学要求,因为本节课是二年级上册的内容,学生第一次接触数学广角,这部分内容本身对于低年级学生来说就比较抽象,不应该象上面那样上成握手中的数学问题,使课堂只成为尖子生的课堂,所以这节课的目标应定为:使学生通过观察、猜测、比较、实验等活动,找出最简单事物的排列数和组合数;初步培养学生有顺序地、全面地思考问题的意识;使学生感受数学与生活的密切联系,激发学生学习探索数学的浓厚兴趣。根据这个目标,可以把教学设计改为:把各项教学内容全部贯穿于一个游戏活动当中,把摆数、握手、搭配衣服、打乒乓球,买练习本等学习内容贯穿整节课,使教材在呈现方式上变得生动、有趣,并富有浓浓生活气息;在内容上也有较强的层次性和逻辑性,使学生感到学数学就好像是在做游戏,增强了全班学生的参与意识,提高了学生学习的积极性,较好地完成教学目标。

二、突出主体,体现价值

1、关注学习过程,突出思想方法

数学广角体现了新课程的一种理念“重要的思想方法的渗透”,在渗透的过程中,切忌片面强调机械记忆、模仿以及复杂技巧。例如在教学三上的排列组合时,有的教师创设了搭配穿衣服的情境后,透过小组讨论、演示搭配过程、以及简单的连线方法后,老师就会问:“有没有更简单的方法?”如果学生还没有列出算式来,老师还会问:“上装的件数和下装的件数,与有多少种搭配方法有什么关系?”迫使学生得出计算的方法,才肯罢休,继续下面的环节。不难看出,这样较快地提炼方法,会使学习成为结果的记忆和套用,知识发生和发展过程中宝贵的教育资源就不能被充分开发利用,这样只关注结果的教学,哪有学生的主体地位?

有一位教研员他是这样设计的,同样创设了搭配衣服的数学情境,提问:“到底有多少中不同的搭配方法呢?你有什么好方法让大家清楚地知道你的种数呢?”接下来,请学生介绍,并引导评价,体验有序思考的好处,然后再提问:“用什么方法巧妙地纪录搭配的结果,比一比,谁的方法又对又快又清楚?”学生尝试用符号来表达自己的想法,有的用文字表示,有的用图形表示,有的用数字表示,有的用字母表示,还有的用算式表示……“它们有什么共同的特点?”“有序!”这样学生有顺序地、全面地思考问题的意识得到了加强,落实课程标准中提出的要求──“在解决问题的过程中,使学生能进行简单的、有条理的思考”。同时,学生通过用图片摆到抽象化的符号,其思考过程经历了从实物到抽象的过程,学生数学化的思考过程也非常明显,教学中教师并不急于提炼方法、得出结论,而是用较重的笔墨充分展开过程,这样重在渗透思想方法,落实数学思考,关注学习过程的教学方法是数学广角教学的首选。

2、夯实学习基础,促进方法渗透

数学广角的教学,不但要渗透数学的思想方法,还要使学生会用这些思想方法解决一些简单的实际生活问题和数学问题,从而培养学生解决生活中实际问题的能力。上一学期,我对四下的《植树问题》这一课进行认真地备课:既考虑到情境的创设如何培养学生的兴趣,贴近学生的生活;也考虑到教学时如何以学生为主体,渗透方法,自主建构。可是在实际的教学过程中,在“种树”时还是跃跃欲试的学生们到“应用规律” 时一个个都像在猜谜,加1?减1?还是不加不减?勉强参与的只是那几个在校外学奥数的学生。看来这样的设计无法顾及全体学生的发展,没有了学生的主体参与,还体现什么价值?反思整节课:因为课前没有较好地了解学生的学习起点,小组合作也只停留在表面,急于得出植树问题的三种情况,这样只重结果,学生似懂非懂,又怎么去应用规律呢?在反思中,我找到了症结,改变了原来的教学设计,首先创设情境后先独立思考,再让学生在小组内充分讨论,有的学生画草图、有的学生画线段图、还有的学生直接列算式,然后我采用反问的形式以及课件的巧妙演示,数形结合,渗透数学学习方法,给学生提供多次体验的机会,让学生有夯实的学习基础,有效地促进数学思想方法的渗透,这样为下面的解决实际问题提供了一根将“发现规律”与“运用规律”链接起来的拐杖,使学生永远站在主体的位置。

三、巧用素材,有效提升

练习在数学教学中占有特殊地位,是课堂教学的重要环节。数学广角的巩固练习创设了许多现实的、学生感兴趣的情境作为学习的素材。有的教师如果是平时上课他会按教材一题一题讲解,不考虑素材安排的目的;如果是上公开课,因为数学广角的练习题量也不多,他又会自己创设出好多的素材来巩固,究竟如何去巧用素材,使数学知识有效提升呢?

例如三上的《组合》这一课,教材上安排了组数、早餐搭配、走路中的数学问题、拍照等,这些丰富有趣的情境牢牢的吸引着学生,如果在教学时只是让学生“用数字卡片摆一摆”、“用线在书上连一连饮料与点心的搭配”、“自己用笔画一画从儿童乐园到百鸟园的路线”或“用线连一连一共拍了几张照片”,这些问题情境的设计与展开是平面的,除了情境的不同,要求上并没有提升,始终停留于具体操作层面,缺少数学化的过程。所以我们在教学时要注意每一个问题情境应有目标重心,组数问题要突出“有序思考”,把点心搭配从“二三搭配”拓展为“三三搭配”,既是对前面思想方法的巩固应用,又能起到举一反三的作用,游玩路线问题则侧重于“符号思想”的应用,让学生思考“如何可以更清楚地表达路线”,拍照问题则可以拓展为如果我们全班同学每个人都想单独和聪聪、明明各合一张影,一共要照多少张?只有这样发挥教材的编排作用,挖掘每个素材的独特功能,才能使学生的各种技能有效提升。

总之,数学广角的教学要体现“以学生为本”,突出主体,把握准目标,让学生经历数学知识的形成过程,把数学思想方法贯穿始终,体现数学的价值,增强应用数学的意识,为学生的终身发展奠定基础。

让我们每一位教师都在数学广角这一画卷上描上最美丽的一笔。

③ 五年级下册数学的数学广角找次品怎么讲解好呢学生做这类题型时有什么窍门

像这样,有9个物品其中有一个是次品(更轻一些)
先把9分成三份9:(3.3.3)最好是平均分,像什么7、8、5……这样的就可以像这样,把7分成三份7:(2,2,3)这里分必须要有两个数相同。
先把9分成三份9:【(3.3).3】天平两边各放3个,这样还是不能分出次品。那就再分,接着把天平两边各放的三个分成3份3:(1.1.1)天平两边各方1个哪个更轻那个就是次品,如果两端一样重,那么次品就是第三个了。这里总共称了2次
把7分成三份7:(2,2,3)天平两边各放2个,接着把天平一边各放的两个分成2份2:(1.1)
天平另一边把剩余的三份平均分3:(1.1.1)这里称了2次

④ 五年级下册数学数学广角找次品问题的公式

若知道次品轻重,那次数就为n,则最多可找出n的三次方的东西。

求次品的问题,其规律是:先分成三等份(当零件个数是三的倍数时),依次再分。当零件个数是3的一次方时,需称一次;

当零件个数是3的二次方时,需二次;当小于或等于3的三次方时,需三次;依次类推.......如:19个模样完全一样的零件,其中一个是较轻的次品,用没有砝码的天平至少几次才能保证找出次品:

解:19<3³

需三次3次:

①先分成9、9、1

② 再分成3、3、3

③最后分成1、1、1

找规律填空:

9-1=8,16-4=12,25-9=16,36-16=20,49-25=24。

1,2,4,7,11,16,(22),(29),——相差为:1,2,3,4,5,6,…

2,5,10,17,26,(37),(50),——相差为:3,5,7,9,…

0,3,8,15,24,(35),(48),——相差为:3,5,7,9,…

找规律的类型简直数不清。有的是所给数字间有规律,有的是隔一个数字间有规律。还有的是相邻两个数字之间的差呈某种规律。规律可能有同加同减同乘一个数或一个数列,或者平方。

以上内容参考:网络-找规律

阅读全文

与数学五年级下册数学广角如何学相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:700
乙酸乙酯化学式怎么算 浏览:1369
沈阳初中的数学是什么版本的 浏览:1315
华为手机家人共享如何查看地理位置 浏览:1007
一氧化碳还原氧化铝化学方程式怎么配平 浏览:845
数学c什么意思是什么意思是什么 浏览:1366
中考初中地理如何补 浏览:1256
360浏览器历史在哪里下载迅雷下载 浏览:667
数学奥数卡怎么办 浏览:1346
如何回答地理是什么 浏览:987
win7如何删除电脑文件浏览历史 浏览:1019
大学物理实验干什么用的到 浏览:1445
二年级上册数学框框怎么填 浏览:1657
西安瑞禧生物科技有限公司怎么样 浏览:818
武大的分析化学怎么样 浏览:1209
ige电化学发光偏高怎么办 浏览:1298
学而思初中英语和语文怎么样 浏览:1603
下列哪个水飞蓟素化学结构 浏览:1384
化学理学哪些专业好 浏览:1449
数学中的棱的意思是什么 浏览:1015