A. 数学符号是什么意思
数学符号*是乘号的意思。*还表示除0之外的数,例:N*表示正整数。
我们现在常用于乘法运算的符号有两个,一个是“×”,另一个是“·”。 “×”是由1631年英国数学家奥雷特最早提出的,“·”是由英国数学家赫锐奥特首创的。
其他信息
在Microsoft Word中可以插入一般应用条件下的所有数学符号,以Word2010及2010版以上软件为例介绍操作方法:
打开Word2010文档窗口,单击需要添加数学符号的公式,并将插入条光标定位到目标位置。
在“公式工具/设计”功能区的“符号”分组中,单击“其他”按钮打开符号面板。默认显示的“基础数学”符号面板。用户可以在“基础数学”符号面板中找到最常用的数学符号。同样地,Alt+41420(即压下Alt不放,依次按41420(小键盘),最后放开Alt 就可以打出 √。
B. 数学上的符号都代表什么意思
数学集合符号都有:N、N+、Z、Q、R、C等。具体介绍如下:
1、全体非负整数的集合通常简称非负整数集(或自然数集),记作N。
2、非负整数集内排除0的集,也称正整数集,记作N+(或N*)。
3、全体整数的集合通常称作整数集,记作Z。
4、全体有理数的集合通常简称有理数集,记作Q。
5、全体实数的集合通常简称实数集,记作R。
6、复数集合计作C。
(2)数学这个符号是什么意思是什么扩展阅读:
1、集合,是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。例如全中国人的集合,它的元素就是每一个中国人。我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。
2、元素与集合的关系有:“属于”与“不属于”两种。
3、集合的运算:
(1)集合交换律:A∩B=B∩A;A∪B=B∪A。
(2)集合结合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。
(3)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。
C. 数学 这个符号是什么意思怎么读
符号是∑,英文译音是Sigma, 表示数学中的求和号,是数学中常用的符号,主要用于求多项数的和。“西格玛”是希腊字母,也有念作“西玛”“希玛”等各种读法。
D. 数学符号是什么意思 数学符号解释
1、数学符号的发明及使用比数字要晚,但其数量却超过了数字。现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。
2、例如加号曾经有好几种,现代数学通用“+”号。“+”号是由拉文“et”(“和”的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文“plu”(“加”的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。“-”号是从拉丁文“minus”(“减”的意思)演变来的,一开始简写为m,再因快速书写而简化为“-”了。
3、也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号。
4、到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号。
5、乘号曾经用过十几种,现代数学通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:“×”号像拉丁字母“X”,可能引起混淆而加以反对,并赞成用“·”号(事实上点乘在某些情况下亦易与小数点相混淆)。后来他还提出用“∩“表示相乘。这个符号在现代已应用到集合论中了。
6、到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。他认为“×”是“+”的旋转变形,是另一种表示增加的符号。
7、“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除。后来瑞士数学家拉哈在他所着的《代数学》里,才根据群众创造,正式将“÷”作为除号。
8、平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“√”表示根号。“√”是由拉丁字线“r”的变形,“ ̄”是括线。
9、十六世纪法国数学家维叶特用“=”表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来。
10、1591年,法国数学家韦达在菱形中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了“=”号,他还在几何学中用“∽”表示相似,用“≌”表示全等。
11、大于号“>”和小于号“
E. 数学符号各有什么含义(请说出所有的符号)
(1)数量符号:如
:i,2+
i,a,x,自然对数底e,圆周率
∏。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(
),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”或“
”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“
”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C
),幂(aM),阶乘(!)等。
符号
意义
∞
无穷大
PI
圆周率
|x|
函数的绝对值
∪
集合并
∩
集合交
≥
大于等于
≤
小于等于
≡
恒等于或同余
ln(x)
以e为底的对数
lg(x)
以10为底的对数
floor(x)
上取整函数
ceil(x)
下取整函数
x
mod
y
求余数
小数部分
x
-
floor(x)
∫f(x)δx
不定积分
∫[a:b]f(x)δx
a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k)
对n进行求和,可以拓广至很多情况
如:∑[n
is
prime][n
<
10]f(n)
∑∑[1≤i≤j≤n]n^2
lim
f(x)
(x->?)
求极限
f(z)
f关于z的m阶导函数
C(n:m)
组合数,n中取m
P(n:m)
排列数
m|n
m整除n
m⊥n
m与n互质
a
∈
A
a属于集合A
#A
集合A中的元素个数
F. 数学是什么符号
“+”用作加号,“-”用作减号等。
乘号曾经用过十几种,现代数学通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。
德国数学家莱布尼茨认为:“×”号像拉丁字母“X”,可能引起混淆而加以反对,并赞成用“·”号(事实上点乘在某些情况下亦易与小数点相混淆)。后来他还提出用“∩“表示相乘。这个符号在现代已应用到集合论中了。
到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。他认为“×”是“+”的旋转变形,是另一种表示增加的符号。
“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除。后来瑞士数学家拉哈在他所着的《代数学》里,才根据群众创造,正式将“÷”作为除号。
G. 数学中的符号是什么
数学中的符号是:在数学中/是除号,除号是个数学符号,是一个由一根短横线和横线两侧的两点构成的符号,其主要用来表示数学中的除法运算。除号可运用到数学、物理学、化学等多领域。
相关内容:
数学符号的发明及使用比数字要晚,但其数量却超过了数字。现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。
数量符号:
如圆周率(π,3.14159265358979),自然率(e,2.71828),斐波那契黄金分割数(φ,0.618033),虚数(i,√-1)和毕达哥拉斯常数(√2,1.41421356)等等。
运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb,lim),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
关系符号
如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于)。
H. 数学中的符号是什么意思啊
数学集合符号如下:
1、N:非负整数集合或自然数集合{0,1,2,3,…}
2、N*或N+:正整数集合{1,2,3,…}
3、Z:整数集合{…,-1,0,1,…}
4、Q:有理数集合
5、Q+:正有理数集合
6、Q-:负有理数集合
7、R:实数集合(包括有理数和无理数)
8、R+:正实数集合
9、R-:负实数集合
10、C:复数集合
11、∅ :空集(不含有任何元素的集合)
集合基础知识:
1、定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集;
2、表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3、关于集合的元素的特征
(1)确定性:给定一个集合,那么任何一个元素在或不在这个集合中就确定了;
(2)互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的;
(3)无序性:即集合中的元素无顺序,可以任意排列、调换。
4、元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)
(1)若a是集合A中的元素,则称a属于集合A;
(2)若a不是集合A的元素,则称a不属于集合A。
5、集合的表示方法
(1)列举法:把集合中的元素一一列举出来, 并用花括号括起来表示集合的方法叫列举法;
(2)描述法:用集合所含元素的共同特征表示集合的方法,称为描述法;
(3)文氏(Venn)图法:画一条封闭的曲线,用它的内部来表示一个集合。
I. 什么是数学符号
数学符号的发明及使用比数字要晚,但其数量却超过了数字。现在常用的数学符号已超过了200个。
数学符号种类:
1,数量符号
2,预算符号
3,关系符号
4,结合符号
5,性质符号
6,省略符号
7,排列组合符号
8,离散数学符号
9,希腊字母
α,β,γ,δ,ε,λ,ζ,η,θ,ξ,σ,φ,ψ,ω都是希腊字母。
希腊字母的发音及常用意义:
希腊字母 读音 常用意义
α 阿尔法 角度,系数,角加速度,第一个
β 贝塔/毕塔 磁通系数,角度,系数
γ 伽玛/甘玛 电导系数,角度,比热容比
δ 得尔塔/岱欧塔 变化量,化学反应中的加热,屈光度,一元二次方程 中的判别式
ε 埃普西龙 对数之基数,介电常数
ζ 泽塔 系数,方位角,阻抗,相对黏度
η 伊塔/诶塔 迟滞系数,效率
θ 西塔 温度,角度
ι 埃欧塔 微小,一点
κ 堪帕 介质常数,绝热指数
λ 兰姆达 波长,体积,导热系数
μ 谬/穆 磁导系数,微,动摩擦系(因)数,流体动力黏 度,微(千分之一),放大因数(小写)
ν 拗/奴 磁阻系数,流体运动粘度,光子频率,化学计量数
ξ 可西/赛 随机变量,(小)区间内的一个未知特定值
ο 欧(阿~)米可荣 高阶无穷小函数
π 派 圆周率=圆周÷直径
ρ 柔/若 电阻系数,柱坐标和极坐标中的极径,密度
σ,ς 西格玛 总和,表面密度,跨导,正应力
τ 套/驼 时间常数,切应力,2π(两倍圆周率)
υ 宇(阿~)普西龙 位移
φ 弗爱/弗忆 磁通,辅助角,透镜焦度,热流量
χ 凯/柯义 统计学中有卡方(χ^2)分布
ψ 赛/普赛/普西 角速,介质电通量,ψ函数
ω 欧米伽/欧枚嘎 欧姆,角速度,交流电的电角度,化学中的质量 分数
希腊字母是希腊语所使用的字母,也广泛使用于数学、物理、生物、天文等学科。希腊字母是世界上最早有元音的字母。俄语、乌克兰语等使用的西里尔字母和格鲁吉亚语字母都是由希腊字母发展而来。