Ⅰ 中国古代数学家有哪些着名人物
中国古代着名数学家如下:
1、祖冲之。
祖冲之是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。
祖冲之在数学上的杰出成就,是关于圆周率的计算. 祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。
2、徐光启。
(1)论述了中国数学在明代落后的原因;
(2)论述了数学应用的广泛性;
(3)与意大利传教士利玛窦一起翻译并出版了《几何原本》。
官至崇祯朝礼部尚书兼文渊阁大学士、内阁次辅。徐光启毕生致力于数学、天文、历法、水利等方面的研究,勤奋着述,尤精晓农学,译有《几何原本》《泰西水法》《农政全书》等着书。同时他还是一位沟通中西文化的先行者。为17世纪中西文化交流作出了重要贡献。
3、华罗庚。
自学成材的天才数学家,中国近代数学的开创人——华罗庚。
在众多数学家里华罗庚无疑是天分最为突出的一位,华罗庚通过自学而成为世界级的数学家,他是解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、 偏微分方程、高维数值积分等广泛数学领域的中都作出卓越贡献。
Ⅱ 数学史上有哪些名人
数学名人:
国内:祖冲之、华罗庚
国外:毕达哥拉斯、牛顿
上述数学名人简介:
1. 祖冲之
牛顿出生于英格兰林肯郡乡下的一个小村落伍尔索普村的伍尔索普庄园。他是爵士,英国皇家学会会长,英国着名的物理学家,网络全书式的“全才”,着有《自然哲学的数学原理》、《光学》。在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。
Ⅲ 宋代着名数学家有哪些
1、贾宪,北宋人,约于1050年左右完成《黄帝九章算经细草》,原书佚失,但其主要内容被杨辉(约13世纪中)着作所抄录,因此传世。杨辉《详解九章算法》(1261)载有“开方作法本源”图,注明“贾宪用此术”。
以上内容参考网络-杨辉
以上内容参考网络-秦九韶
以上内容参考网络-贾宪
Ⅳ 数学史的发展大致可以分为几个时期分别有哪些代表人物
1 (前3500-前500)数学起源与早期发展:古埃及数学、美索不达米亚(古巴比伦)数学
2(前600-5世纪)古代希腊数学:论证数学的发端、欧式几何
3(3世纪-14世纪)中世纪的中国数学、印度数学、阿拉伯数学:实用数学的辉煌
4(12世纪-17世纪)近代数学的兴起:代数学的发展、解析几何的诞生
5(14世纪-18世纪)微积分的建立:牛顿与莱布尼茨的微积分建立
6(18世纪-19世纪)分析时代:微积分的各领域应用
7(19世纪)代数的新生:抽象代数产生(近世代数)
8(19世纪)几何学的变革:非欧几何
9(19世纪)分析的严密化:微积分的基础的严密化
10二十世纪的纯粹数学的趋势
11二十一世纪应用数学的天下
以上是按数学发展的脉络进行划分的,不是按时间顺序,时代也都标注了.
如果在简单说就是 1古代数学 希腊的论证数学与中国的实用数学的起源发展
2近代数学 微积分的发现、应用、严密化
3现代数学 对数学的基础的思考
其他的都是这三个大的数学发展脉络的附属品,贯穿数学发展的思想只有2个,就是希腊贵族式的论证数学与中国平民是的实用数学的思想的起源、发展、相互影响.(其中贵族数学是说希腊贵族人研究数学,平民不接触)
Ⅳ 数学史上的十个名人,你知道有谁吗
1、毕达哥拉斯:影响西方乃至世界的人物,第一个着重“数”的人,发现毕达哥拉斯定理(勾股定理)证明了正多面体的个数,建设了许多较有影响的社团毕达哥拉斯学派创始人。
2、欧几里得:欧几里得几何(欧式几何)的始祖,编写了几何原本。
3、阿基米德:写出几何体的表面积和体积的计算方法,着有《论球和圆柱》、《论螺线》、《沙的计算》、《论图形的平衡》。
4、祖冲之:创立《大明历》,把圆周率推算到小数点后七位。
5、笛卡尔:在数学发展上汪塌与费马共同创立了解析几何学,使数学进入了第一个重要时代——变量时代,他还发现了凸多面体边困喊圆、顶点、面之间的关系,后人称为欧拉-笛卡尔公式。还有微积分中常见的笛卡尔叶形线也是他发现的。
6、莱布尼茨:与牛顿共同发现了微积分,使数学进入了第二个重要时代,提出了许多数学符号,是一个数学符号大师。
7、欧拉:提出函数的概念,创立分析力学,解决了柯尼斯堡七桥问题,给出欧拉公式,拓扑学的创始人。
8、高斯:至今为止最伟大的数学家,发现了数个后来才被人发现的定理(后人在他笔记上看到的),及独立研究出前人发现的定理,不求名利。
9、黎曼:非欧几何的黎曼几何的创始人。
10、希尔伯特:证明论、数理逻辑、区分数学与元数学之渗核差别的奠基人之一,发明和发展了大量的思想观念。
Ⅵ 古代数学名人有哪些
张丘建:《张丘建算经》
《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界着名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等着作中均出现有相同的问题。
朱世杰:《四元玉鉴》
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名着,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法) 。
贾宪:《黄帝九章算经细草》
中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成《黄帝九章算经细草》,原书佚失,但其主要内容被杨辉(约13世纪中)着作所抄录,因能传世。杨辉《详解九章算法》(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是着名的“贾宪三角”,或称“杨辉三角”。《详解九章算法》同时录有贾宪进行高次幂开方的“增乘开方法”。
贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。
秦九韶:《数书九章》
秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成着名的《数书九章》。《数书九章》全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶:《测圆海镜》——开元术
随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学着作中,首先系统阐述开元术的是李冶的《测圆海镜》。
李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学着作《益古演段》(1259),也是讲解开元术的。
刘徽: 《海岛算经》、《九章算术注》、《九章重差图》
263年左右,六会发现当圆内接正多边形的变数无限增加时,多边形的面积则可无限逼近圆面积,即所谓“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”刘徽采用了以直代曲、无限趋近、“内外夹逼”的思想,创立了“割圆术”《重差》原为《九章算术注》的第十卷,即后来的《海岛算经》,内容是测量目标物的高和远的计算方法。重差法是测量数学中的重要方法。