导航:首页 > 数字科学 > 国际小学数学课程内容改革有哪些特点

国际小学数学课程内容改革有哪些特点

发布时间:2023-08-08 21:34:54

1. 小学数学新课程标准有什么特点

数与代数
数与代数现行大纲这部分内容主要侧重有关数、代数式、方程、函数的运算,《标准》对此作了较大地改革:
1.重视数与符号意义以及对数的感受,体会数字用来表示和交流的作用.通过探索丰富的问题情景发展运算的含义,在保持基本笔算训练的前提下,强调能够根据题目条件寻求合理、简捷的运算途径和运算方法,加强估算,引进计算器,鼓励算法多样化.
2.对于应用问题:选材强调现实性、趣味性和可探索性;题材呈现形式多样化(表格、图形、漫画、对话、文字等);强调对信息材料的选择与判断(信息多余、信息不足……);解决的策略多样化;问题答案可以不唯一;淡化人为编制的应用题类型及其解题分析.
3.使学生初步体会数学可以发现、描述、分析客观世界中多种多样的模式,把握事物的变化和事物间的关系;初步发展学生的符号意识,学会用符号表达现实问题中的一些基本关系,会初步进行符号运算.
4.体会方程和函数是刻划现实世界,有效地表示、处理、交流和传递信息的强有力工具,是探究事物好发展规律,预测事物发展的重要手段,重视对简单现实头问题的建模过程,学会选择有效的符号运算程序和方法解决问题,重视近似解法特别是图象解法.
第一学段
1.增加“能进行简单的四则混合运算(两步).
2.适当加强基础.
3.加强综合能力的培养.
第二学段
1.增加“结合现实情景感受大数的意义,并进行估算;发展学生的数感;加强与现实的联系.”
2.增加了“了解公倍数和最小公倍数,了解公因数和最大公因数.”
3.删除“会口算百以内一位数乘、除两位数”(?教师讨论)
4.将“理解等式的性质,会用等式的性质解简单的方程”改为“能理解简单的方程.”
图形与几何
(原称空间与图形:变“空间与图形”为“图形与几何”;重提几何直观、推理能力、运算能力、逻辑思维能力,用词更加规范,体现了课标的严肃)
现行大纲这部分内容,小学主要侧重长度、面积、体积的计算,初中主要是运用逻辑证明和扩大公理化的方法呈现有关平面图形的性质,这使得学生不能将所学的几何知识与现实生活联系起来,也没有体现现代几何的发展,还往往造成不少学生因此对几何、至整个数学学习失去了兴趣和信心.为此,《标准》在重新审视几何教学目标的基础上,提出几何学习最重要的目标是使学生更好地理解自己所生存的世界,形成空间观念.并对传统的几何内容进行了较大幅度的改革:
1.设置了“空间与图形”领域,将几何学习的视野拓宽到学生生活的空间,强调空间和图形知识的现实背景,从第一学段开始使学生接触丰富的几何世界.
2.通过观察、描述、制作、从不同的角度观察物体、认识方向、制作模型等活动,发展学生的空间观念和和图形设计与推理的能力.
3.突出用观察、操作、变换、坐标、推理等多方式了解现实空间和处理几何问题,体会更多的刻划现实生活中的应用.
《标准》中还指出,逻辑证明的要求并不局限于几何内容,而应该体现在数学学习各个领域,包括代数和统计与概率等;对于几何证明的教学来说,它的目的不应当是追求证明的技巧、证明的速度和题目的难度,而应服从于使学生养成“说明有据”的态度、尊重客观事实的精神和质疑的习惯,形成证明的意识,理解证明的必要性和意义,体会证明的思想,掌握证明的基本方法等等.因此,《标准》中在强调探索图形性质的基础之上,要求证明基本图形(三角形、四边形)的基本性质,降低了对论证过程形式化和证明技巧的要求,删节去了繁难的几何证明题,旨在通过这些让学生体验逻辑证明的意义、过程,掌握基本的证明方法,同时,向学生介绍欧几里得和《几何原本》,使学生体会它们对于人类历史和思想发展中的重要作用.综上所述,《标准》大大地加强和改善了目前的几何教学.
<标准>的”图形与几何”第一学段仍分为四部分,具体表示有所变动,(1)图形的认识,(2)测量,(3)图形的运动,(4)图形与位置,
在探索、发现、确认、证明图形性质过程中,体现两种推理(合情推理与演绎推理)相辅相成的关系.
体现增强学生“发现和提出问题、分析和解决问题”的能力要求.
“图形的运动”强调了图形的运动是研究图形性质的一种有效方法.
运动也是一种基本的数学思想.
第一学段
(1)将能在方格纸上画出简单图形沿水平方向、垂直方向平移后的图形”放在第二学段.
(2)将”能在方格纸上画出简单图形的轴对称图形放在第二学段.”
第二学段
(1)删除“两点确定一条直线”和“两条直线确定一个点”
(2)增加“通过操作,了解圆的周长与直径的比为定值.
统计与概率
现行大纲中只在小学高年级和初三代数中设立一章介绍有关统计初步的内容,几乎没有涉及概率内容,同时仍然采取“定义——公式——例题——习题”的体系呈现弦计初步知识,使得学生很难得体会这部分内容与现实的联系,统计与概率对决策的作用.因此,《标准》中大大增加了“统计与概率”的内容,在三个学段根据学生的认知特点,分别设置了相应的内容,结合实际问题,体现了统计与概率的基本思想:1、反映数据统计的全过程:收集和整理数据、表示数据、分析数据、作出决策、进行交流.2、体全随机观念和用样本估计总体的初步思想,将概率统计方法作为制定决策的有力手段.3、根据数据作出推理和合理的论证,并初步学会用概率统计语言进行交流.
统计
鼓励学生运用自己的方式呈现整理数据的结果.
⑴(第一学段)不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(放在第二学段).
这种变化有三个原因:
① 更加突出了学生对数据分析的体验,鼓励学生用自己的方式去分析数据.
② 早期经验的多样化可以为以后学习:“正规”的统计图表和统计量奠定比较牢固的基础.
③ 使得统计内容在第一、二学段的要求层次更加明确.
⑵ 加强分析图表的能力里的培养.
提升“读图能力”的培养.
⑶ 加强调查等活动的体验.(主要是小调查)
在收集数据方法方面,考虑到学生年龄特征,要求学生了解测量、调查等的简单方法,不要求学生从报刊、杂志、电视等去收集资料.
⑷ 第二学段与《标准》相比,在统计方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在第三学段)平均数易受极端数的影响(最大数与最小数的影响).
⑸ 另外,删去“体会数据可能产生的误导”这一要求.
概率(可能性,重视“随机现象”)
在第一学段,去掉了<标准>对此内容的要求:第二学段只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性的描述.
综合与实践
“综合与实践”是一类以问题为载体,学生主动参与的学习活动.,是帮助学生积累数学活动经验,培养学生应用意识与创新意识的重要途径.
针对问题的情景,学生综合所学的知识,和生活经验,独立思考或与他人合作经历发现问题和提出问题,分析问题和解决问题的全过程,感悟数学各部分内容之间\数学与生活实际之间\数学与其他学科之间的联系,加深对所教数学内容的理解.
《标准》增设“联系与综合”部分的目的是让学生在各个知识领域的学习过程中,有意识地体会数学与他们的生活经验、现实社会和其他学科的联系,以及数学在人类文明发展与进步过程中的作用;体会数学知识内在的联系.同时,采用过“综合实践活动”这种新的学习形式,通过学生的自主探索与合作交流,使他们获得综合运用数学知识和方法解决实际问题、探索数学规律的能力,逐步发展对数学的整体认识.
新的数学课程新技术对数学课程提出了新的要求,指出了新技术包括数学课程的目的、数学学习的内容以及教与学的方式等方面产生了巨大影响.因此,《标准》提出在第二学段引入计算器,并鼓励把计算器和计算机作为研究、解决问题的强有力的工具.这样可以免除学生做大量繁杂、重复的运算,从而在探索性、创造性的数学活动中投入更多的精力,解决更为广泛的现实问题.
同时,在课程实施建议中强调,有条件的地区应尽可能在教学过程中使用现代教育技术,增加数学课程的技术含量,充分利用现代教育技术在增加师生互动、形象化表示数学内容、有效处理复杂的数学运算等方面的优势,去改进学生的数学学习方式、增进学生对数学的理解,最终提高数学教学的质量.
对综合与实践的理解-------实践性﹑综合性﹑探索性
“综合与实践”应当保证每个学期至少有一次,它可以在课堂上完成,也可以在课外或课内外相结合完成.
“综合与实践”的核心是发现和提出问题,分析和解决问题,不同学段有不同的特点.
第一学段:内容安排强调时实践性和趣味性.
第二学段:
通过应用、探索和反思,加深对所学知识的理解,通过探索、引发学生学习的兴趣和培养思考的习惯,通过交流,发展理解他人、团结互助的合作精神.
启示:
启示一:坚持数学课程的三维整体目标
把促进学生的全面发展体现在新的教学课程标准中,形成了包括知识与技能、思维与能力、情感与态度 三个基本方面的目标.
启示二:以发展学生的数学思维作为课程与教学的重点之一
在教师指导下自主学习和探究问题,初步学会大知识的学习和解决问题过程中进行自我评判和调控.
让学生对知识进行系统的整理.
初步学会对已有知识经验质疑和对问题进行多方面的分析,能进行发散性思维,能提出自己的见解(算法多样化、思考问题的策略化).
初步掌握观察、操作、比较、分析、类比、归纳多种数学的思考方法和利用图表整理数据,获取信息的方法.
具有抓住现实生活的本质,进行数学抽象与概括的经历与经验.
懂得从特殊到一般,从一般到特殊以及转化的思维策略.
启示三:把解决问题置于数学课程的核心地位
在标准的修改稿中,不仅体现了解决问题的基本理念,而且在实施过程中形成自己的特色(经历探索、实践的过程).
启示四:要把促进创新和落实基础知识统一起来
数学学习中创新活动主要集中在发现问题、提出问题、分析问题和解决问题的过程中.
在上述活动中,学生已有的知识基础占有重要作用.

2. 简述当今国际小学数学课程目标的变革主要体现在哪些方面

注重问题解决,注重数学应用,注重数学交流,注重培养学生的态度情感与自信心,注重数学思想方法。

通过范例和解题教学,综合运用数学思想方法,一方面要通过解题和反思活动,从具体数学问题和范例中总结归纳解题方法,并提炼和抽象成数学思想;另一方面在解题过程中,充分发挥数学思想方法对发现解题途径的定向、联想和转化功能。

(2)国际小学数学课程内容改革有哪些特点扩展阅读

要通过对教材完整的分析和研究,理清和把握教材的体系和脉络,统揽教材全局.然后,建立各类概念、知识点或知识单元之间的界面关系,归纳和揭示其特殊性质和内在的一般规律.

其次,以数学知识为载体,将数学思想方法有机地渗透入教学计划和教学内容之中,教学计划的制订应体现数学思想方法教学的综合考虑,要明确每一阶段的载体内容、教学目标、展开步骤、教学程序和操作要点。

数学教案则要就每一节课的概念、命题、公式、法则以至单元结构等教学过程进行渗透思想方法的具体设计通过目标设计,在知识的发生和运用过程中贯彻数学思想方法,形成数学知识、方法和思想的一体化.

3. 目前数学课程改革呈现特点

改变课程结构过于强调学科本位、科目过多和缺乏整合的现状,整体设置九年一贯的课程门类和课时比例,并设置综合课程,以适应不同地区和学生发展的需求,体现课程结构的均衡性、综合性和选择性。

改变课程内容‘难、繁、偏、旧’和过于注重书本知识的现状,加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能。

改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生收集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力。
第三次数学课程改革从20世纪80年代初开始一直延续至今。随着社会的进步,中等教育的普及化、终身教育思想的兴起,使得数学教育的目的从过去的为升学做准备转变到了为学生提供今后得以发展和接受继续教育的基础,因此应当培养学生一定的自学能力、探究能力,以便能够接受继续教育。科学技术的迅猛发展、信息技术在日常生活中的广泛使用,要求广大普通老百姓能够更加深入地理解数学,从而适应数字化时代的生活。另外,数学教学质量的严重下降,引起人们的广泛关注和普遍忧虑。数学课程改革就是在这样的背景下进行的。这次改革,指导思想是“大众教育”,“数学为人人”(mathematicsforall)的思想被广泛接受,理论基础是建构主义。数学教育旨在发展学生的数学素养,促进学生自觉自主地学习数学,提高教学质量。在对数学素养内涵的理解上,将过去的(1)理解数学的概念和原理;(2)理解数学的探究过程;(3)理解数学与一般文化的关系,发展为:(1)理解数学的本质、数学的价值等;(2)了解数学发展的历史;(3)理解数学与社会的关系,强调“问题解决”的能力。从国际范围看,本次数学课程改革的重点在课程目标和指导思想上。数学教材是落实课程目标的载体,但人们越来越清楚地看到,教师教育思想的变革、教学水平的提高更加关键,教育思想的变革会带来教学过程、教学手段、教学方法等的一系列变革。再好的教材,如果教师教学水平不提高,也不能发挥真正有效的作用。

从上述简单回顾可以看出,数学教育改革总是在曲折中前进的,改革中存在着许多永恒的课题,出现改革的“钟摆现象”是因为在改革过程中没有能够把握好涉及教育深层次矛盾的平衡。例如,数学学习与人文素质的养成的关系,儿童经验的积累与系统知识学习之间的关系,数学教育的普及和提高之间的关系,教学过程中教师与学生的关系,书本知识的系统学习和实践应用之间的关系,数学知识的严谨性与学生认知发展水平之间的关系,数学教育必要的稳定性与社会发展对人的数学素养要求的变化性的关系,等等。数学教育改革的历史告诉我们,这些关系的处理,任何强调一个方面而忽视另一个方面的做法都是不可取得。矫枉过正、过犹不及,历史的经验教训值得记取。

二对当前我国数学课程改革的思考

当前我国数学课程改革并不局限在课程上,实际涉及了教育思想、教育目标、教育内容、教育方法等各个方面。可以说,人们对任何时期的数学教育都不会说“满意”,随着社会的发展、科技的进步,数学教育的改革是永恒的。实际上我国数学教育改革的步伐一刻也没有停止过。总结国内外数学教育改革经验,我们认为在当前的数学课程改革中如下问题应特别关注。

1.全面贯彻党的教育方针,大力推进素质教育。数学课程既要体现基础性、普及性,使全体学生都达到基本的数学要求;同时,又要体现发展性,注意创造性人才、尖子人才的数学发展需求,鼓励和支持学生在数学上冒尖。

随着社会的进步和发展,基础教育已经逐步发展为普通的、共同的国民教育,这是以提高人的素质为主要目的的教育。通过接受基础教育,要使学生在思想品德、民族传统、道德法律等方面受到教育,逐步形成正确的世界观、人生观和价值观,成为有社会责任感的、能努力为人民服务的人,并初步形成创新精神、实践能力、科学和人文素养以及环境意识,掌握适应终身学习的基础知识、基本技能和方法,成为有理想、有道德、有文化、有纪律的一代新人。而在义务教育阶段,基础性、普及性是更为重要的。因此,数学教育应当根据基础教育的这一特点,把使全体学生掌握必要的数学知识并能在实践中使用,以适应终身学习的需要作为主要任务。这是时代发展赋予数学教育的使命。

但是,这里要注意,“面向全体学生”并不意味着“平均主义”,不能以降低标准为代价。要处理好“面向全体”与“保持标准”之间的关系。实际上,“面向全体学生”是建立在承认人的差异性、强调个人对自己发展的自主性的基础上的,而不能要求所有的人按照一个标准(低标准就更不行了)来发展。“面向全体学生”与“因材施教”是同义词。为此,数学课程应当具有较好的可选择性,教材应当有弹性。规定一个大多数学生能够接受的标准(这个“标准”需要进行大量研究),同时设置弹性内容,使得不同学生有选择机会。特别应当注意为那些在数学上有特别兴趣、有突出表现的学生提供数学发展机会。

2.综合考虑数学教育的社会功能和育人功能。过去考虑较多的是数学的工具性,考虑适应社会发展的需要,为经济建设和社会实践服务。而在育人(促进人的发展)方面,注重的是“智育目标”,注意力集中在掌握数学知识、发展思维能力上。在当前的数学课程改革中,除了考虑这些以外,还要强调人的发展需要,为人的发展服务,使学生通过数学学习形成良好的情感态度,形成正确的价值观。“教育的本质是提高人的素质,也即个体的发展。”教育的社会功能要通过育人功能来体现,公民素质的提高才是社会发展的根本保证,经济建设和社会进步才有了真正的基础。从根本上说,“社会功能”和“育人功能”是内在统一的,具体落实在学生的个性发展上。

就促进学生个性发展而言,数学课程的功能也应从单纯注重传授知识转变为引导学生学会学习、学会生存、学会做人,特别应当关注学生的“科学素养”。“科学素养”内涵“概念性知识、科学理智、科学伦理、科学与人文、科学与社会、科学与技术”等六个范畴,因此,“科学”(包括数学)学科的任务,不仅要传授作为事实性知识的“科学知识”,而且要传授“方法论知识”、“规范性(价值性)知识”,使学生学会探究,学会跨学科的知识整合,学会做人。[7]

需要指出的是,学校教育中,数学知识的系统学习始终是最重要的,没有知识的学习和掌握,学生的一切发展都将落空。“青少年学生个体的发展,主要是通过掌握人类长期积累的认识和改造世界的已有成果而实现的,也就是通过学习科学知识(而且主要是书本知识)而实现的”。[8]认知心理学的研究也表明,学生是否能够成功地用数学解决问题,其决定因素是学生是否具备了比较完备的数学知识。另外,数学知识“不仅凝结着人类认识和改造客观世界的成果(事物的特性、规律等),而且凝结着人类主观精神,包括能力、情感、意志、思想、品德等,发展到当今时代,更富有自然、社会、历史、人文等丰富的文化内涵”。学生在数学学习中,“通过精心设计,教师领导学生简化地展开、再现、重演科学知识中隐含着的原始的实践和认识活动,包括认知活动和情感体验活动等,这也就是学生认识世界,接受文化熏陶,德、智、体等素质发展的过程”。[9]一般的,知识学得越多、越好,素质越高。因此可以说,不仅有“无知者无能”,而且有“无知者无情”。当然,数学知识学习的目标应当发展。除了通过学习而了解数学概念“是什么”、理解数学知识的内涵、本质及其逻辑体系等以外,还要通过理解知识的内涵、本质等而发展对数学的主体的、充满情感色彩的认识,通过对数学的亲身体验和实践而产生对数学的一种看法,即价值观。例如,通过数学学习,要产生对事物发展变化规律进行理性思考的习惯和爱好,养成凡事讲前因后果、正直诚实、实事求是、尊重理性、追求真理、(转载自中国教育文摘http://www.edUzhai.net,请保留此标记。)坚定自信、刻苦勤奋、责任心强、勇于创新、百折不挠、持之以恒、严谨细致、独立思考等态度。只有这样才能为每个学生的具有个性的健康发展创造条件。

另外,发展学生的数学能力,特别是思维能力仍然是数学教育的首要任务。“数学是思维的科学”,因此,数学的育人功能在很大程度上需要通过发展学生的思维能力来体现。数学能力强的学生不仅会用归纳、演绎和类比进行推理,会合乎逻辑地、准确地阐述自己的思想和观点,具有良好的思维品质,而且能够在他的学习和生活中自觉地运用数学;他们能从数学的角度看问题,知道什么时候以及如何应用数学去的分析、解决问题是有效的;他们具备选择职业和进一步学习数学所需要的数学基础。显然,这些都是当代劳动者所应具备的基本素质。数学能力的内涵非常丰富,包括能够理解数学概念和方法,在各种情况下辨明数学关系;会逻辑地推理,解决各种常规的和非常规的问题;能够用数学方法阅读文献,能够用口头和书面形式表达数学关系,进行逻辑分析;能够有效地进行数学交流,即会阅读并理解数学课本,会口头和书面把数学研究和问题解决的结果向别人表达,等等。

3.深刻理解数学“双基”的内涵。为了实现数学课程功能的转变,首先需要确定哪些基础知识和基本技能是学生终身发展所必需的。这里涉及如何理解“双基”内涵的问题。过去人们认为“双基”主要指代数、几何等学科中的概念、法则、性质、公式、公理、定理等,以及按照一定的程序与步骤进行的运算、作图或画图、推理等操作活动。从当代认知心理学对知识的分类看,这些都属于“陈述性知识”,或“明确的知识”。除陈述性知识外,还有另一类知识,这就是“程序性知识”,或“默会知识”。这类知识是从活动过程、活动方式中表现出来的,只能在实践中通过观察、模仿和自主活动而获得。因此,在选择和确定“双基”时,应当做到“过程”与“结果”并重,既重视“陈述性知识”(“明确知识”),又重视“程序性知识”(“默会知识”)。当前,适当地加强探究性活动是需要的。例如,对于概念、法则、性质、公式、公理、定理等,先不直接给出明确定义,而是通过一定量的实例引导学生进行观察、实验、推理,尽量使学生去“经历”、“探索”、“体验”它们的形成过程;适当突出或增加一些活动性内容,例如,几何中的“变换”、“投影”,代数中的建模、估计、实践活动,统计中的数据收集、整理、分析等活动,等等。在数学课程中设置一些适合学生认知发展水平的综合实践活动,强调学生在学习过程中的自主探究性活动,通过实践活动来培养学生综合运用所学知识的能力,发展创新精神和实践能力,是时代发展的要求。

4.强调学习的过程和学习的方法。过去的数学教学中,人们更多关注了学习的结果,对学生的学习方式和学习策略关注不够。当前,为了引导学生学会学习,必须特别关注学习过程和学习方式。

学生掌握科学的学习方式和学习策略,是实现主动参与式学习、探究式学习、自主活动式学习、合作学习的条件。这个问题涉及到教学材料的选取和内容的呈现方式,更依赖于教师的教学。科学的学习方式和良好的学习策略只能在学生积极的、自主的数学活动中形成。教学中应当充分重视学生亲身感受、实践操作、合作交流,给学生提供探索与交流的空间,使数学学习过程真正成为学生在自己已有经验(包括数学的和非数学的)基础上的主动建构过程,在数学知识的形成与应用过程中认识和掌握“双基”,强调数学思想方法在学习和解决问题过程中的作用,从知识的联系与综合中理解知识,等等。

重视学习的过程,强调探究性学习,一些方法或策略性的知识、价值性的知识必然会凸显出来。例如,如何发现问题、提出问题,如何解释和转化问题使之变成更易于解决的形式,如何收集、判断、选择和利用信息,如何选择和有效地使用工具(例如信息技术工具),如何与人合作交流,如何面对未知世界的挑战以及学习中的困难,等等。在这样的过程中,长期潜移默化的熏陶,可以使学生逐渐养成“数学地思维”的习惯,养成勤奋刻苦、求实创新的精神。

这里,对学习方式、学习过程应当作全面理解。应当说,接受式学习仍然是学校数学学习的主要方式,接受学习并不一定就是被动的,因为经验的接受并不能象物体的接受那样,可以在不改变它的性质和存在方式的状态下进行。“经验的接受过程是主体重建经验结构的过程,即其心理结构的构建过程。…,它必须处于十分主动的状态,积极进行一系列复杂的生理与心理水平的变换,即能动的反映活动才能实现。”[10]“举一反三”、“融会贯通”、“触类旁通”等等,都是能动的接受学习的写照。但是,如果把接受学习演化为死记硬背、机械训练,没有学生积极主动的数学思维参与,没有学生的主体建构,这就失去了“数学知识经验的接受”的本来含义了。所以,学习方式的被动或主动,关键并不在于它是“接受的”还是“发现的”,而是在于教学活动中学生主体的数学思维参与程度。学习过程是指学生在已有经验的基础上,通过新旧知识的相互作用而将新知识内化到主体认知结构中去的过程,是对知识的主动建构过程,是数学认知结构的组织和再组织的过程。这个过程有层次性、阶段性。完整的学习过程应当包含感知和观察问题情境、抽象和表述数学问题、进行数学推理变换或证明、对结果进行反思修正或推广以及应用等,这是一个从具体到抽象再到具体的循环过程。具体可以有两种不同的形态。一种表现为对问题情境的观察、分析、假设、抽象而获得数学模型,并选择恰当的数学工具,应用有效的数学思想方法去求解、验证、解释模型,必要时对问题情境进行再分析、修改假设、再求解模型。这一学习过程比较完整地体现了数学的学和用之间的关系,在强调创新精神和实践能力培养的今天,需要特别强调。另一种表现为在抽象的数学原理指导下的实践活动,在数学概念、定理、性质等的引导下,通过恰当的变式训练、知识的实际应用等而达到对知识的理解,并进而逐渐达到创造性地应用知识去解决问题。这是一种高效的学习过程,是学生在短时间内掌握大量书本知识的主要方式。

当前,如何使数学基础知识和基本技能的学习过程同时成为学会学习和形成正确价值观的过程,将创新精神和实践能力的培养落实在数学知识的学习中,是一个需要下大力进行研究的问题。

5.课程内容强调书本知识、生活知识、社会实践性知识的联系。既要保持数学知识的一定系统性、结构性(系统性知识、结构功能良好的知识才能在人们处理问题的过程中正真发挥作用),又要注意与其他学科及社会实践性知识的联系、综合和整合。

《纲要》认为,我国整个基础教育阶段的课程设置存在“课程内容‘难、繁、偏、旧’和过于注重书本知识的现状”,因此应当加强课程内容与学生生活及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能,这是数学课程内容改革的指导原则。我们应当认真反思数学课程中“难、繁、偏、旧”的问题及其造成这种状况的原因。数学中存在一些非常古老(例如平面几何的内容、实数的有关内容等等)但却是学生终身发展所必需的内容,其中有些虽然比较难学,但仍应让学生学习。总体上看,数学学习是一项艰苦的智力劳动,不下苦功是不行的。当然,这些内容的呈现与表述,应当与学生的心理发展水平相适应,应当用现代数学思想为指导,从而使古老的内容焕发出时代青春。我们认为,就当前的数学课程内容改革而言,重点应当放在呈现方式的变革上,通过与学生周围生活、现代社会以及科技发展的联系,在现代数学思想方法的指导下,把需要学习的“双基”呈现出来。另外,通过加强实践性、探究性内容,使学到的知识有应用的机会,在应用的过程中把那些“默会知识”或“程序性知识”表现出来。

在数学课程结构体系的组织上,应当适当强调综合。这就要求我们在组织课程内容时,既要关注学生的已有经验(包括从生活中获得的经验和从学校学习中获得的经验)、学习兴趣,又要关注数学学科本身的内在逻辑。在我国的数学课程理论中,一直要求既注意数学的逻辑体系又关注学生的认知规律,但在教材编写的实践中却往往把学生的认知规律放在次要地位,更多考虑了数学本学科的逻辑要求。在与学生的认知规律发生矛盾时,往往不敢“暂留模糊”。强调数学课程的综合性,其实质是要使学生的已有经验与数学的内在逻辑有机地统一起来,并且通过综合实践活动使创新精神和实践能力的培养得到加强与落实。

值得指出的是,“改变过于注重书本知识的现状”不能与削弱书本知识等价,学校教育的性质决定了学生必须以学习书本知识为主。强调数学课程与学生生活及社会实践的联系,主要是为了让学生更好地学好数学基础知识、练好数学基本技能,更加深刻地理解数学知识的内涵,并能在生活和生产实践中加以应用。生活经验、社会实践不能代替书本知识学习。基本的、重要的数学知识的系统学习始终是最主要的。那种“重要的不在于让学生学到多少数学知识,而在于使学生掌握数学学习的方法,提高数学素养”的提法是片面而有害的。否则,象上世纪第一次数学教育改革,为了纠正过分强调学科的地位和作用而忽视一定的生活、活动和实践的状况,提出以生活为中心、以活动为中心来构建数学课程的主张,实践已经证明这是片面的,它降低了学生认识的起点,从而导致数学教育质量的严重下降,是行不通的。学校数学教育的“最大特点和优势,就在于为学生的认识和发展,提供高起点”。[11]

6.处理好学生的自主探究式学习与教师的适度引导、帮助的关系。学之道在于“悟”,教之道在于“度”。学生通过自己的实践探索产生对知识本质的理解、对知识意义的领悟,教师则要在学生学习过程中把握好恰当的“干预度”。过去的课堂教学实践存在一定的“教师中心”倾向(当然,“以学生为中心”也不能正确反映教学过程中各因素之间的关系),这对学生主体性的发挥,特别是创造性的培养和发挥是不利的,因此应当改变,要加强学生学习的自主性。这就要我们在课程改革的各个环节(课程设置、教材编写、课堂教学、课程评价等等)都考虑到给学生的自主学习提供时间和空间,倡导学生主动参与、勤于动手、积极探索。教材编写应当考虑课程实施的需要,为改变死记硬背、机械训练的状况奠定基础。从学生的已有经验出发,构建“情景性问题”,使学生能够经历数学知识的再发现、“数学化”的过程,为学生掌握“默会知识”营造认知环境,为培养学生收集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力提供载体,这是教材编写的努力方向,我们应当进行积极的实践。课程实施过程中,教师的角色要做相应的调整,要把主要精力放在设计教学情境,或与学生一起、帮助学生设计正确的学习路线、选择正确的学习方法,指导和帮助学生分析、处理各种信息等方面。数学教学中,人与人之间的情感交流是最重要的教育资源、方法和手段,所以教师的作用是非常重要的,某种意义上可以说比过去更重要了。因为过去学生接触的事物较少,信息渠道也不多,接受的大部分是书本知识,但信息时代、网络时代的信息渠道四通八达,学生获取信息的渠道、方式和方法等都是教师、家长所无法控制的。这样,对各种信息的辨别、分析、处理和使用的指导和帮助就显得更加重要了。所以,教师的角色会变化,但作用更大了,未来教师也更难当了。

7.加强信息技术与数学课程的整合。《纲要》中提出,要“大力推进信息技术在教学过程中的普及应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。”[12]由此可以看出,信息技术与数学课程的整合涉及数学教育的各方面问题,特别是对传统的数学教育观念、课堂教学方法以及学生的学习方式等会带来巨大的冲击,这是所有数学教育工作者都要面对的问题。

信息技术与数学课程的整合是为了使学生学会使用信息化的技术,这对学生的发展是非常重要的。因为从数学学习中掌握的信息技术,是人们未来学习和工作的基本工具。在这个问题上,过去人们比较多的是在理念层次上进行讨论,现在应当更加注重实践,更加注重落实。有专家指出,课程教学改革中,发展教育网络、建设信息库、开发软件等等都是非常重要的,但更加根本的是怎么“化信息为知识,化知识为智慧,化智慧为德行”。具体到信息技术与数学课程的整合,我们应当针对数学学习的不同任务,例如:了解数学的基本事实(从实际中获得的事实和现象、背景材料);理解数学的基本理论(概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法);掌握数学的基本方法(搜集信息、处理数据、绘制图表、从简单实际问题抽象出数学问题和用数学知识解决实际问题的一般方法);学会基本的应用(数学在相关学科、生产和日常生活中的应用)等等,而设计相应的基本整合形式。例如,辅助教师传授书本知识的教学;辅助教师讲授和学生实践相结合的教学;辅助学生自主探究式的学习;辅助师生进行数学实验,等等。在具体设计中,要特别注意选择合适的信息工具。

阅读全文

与国际小学数学课程内容改革有哪些特点相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:722
乙酸乙酯化学式怎么算 浏览:1388
沈阳初中的数学是什么版本的 浏览:1334
华为手机家人共享如何查看地理位置 浏览:1026
一氧化碳还原氧化铝化学方程式怎么配平 浏览:866
数学c什么意思是什么意思是什么 浏览:1389
中考初中地理如何补 浏览:1277
360浏览器历史在哪里下载迅雷下载 浏览:684
数学奥数卡怎么办 浏览:1367
如何回答地理是什么 浏览:1004
win7如何删除电脑文件浏览历史 浏览:1037
大学物理实验干什么用的到 浏览:1465
二年级上册数学框框怎么填 浏览:1681
西安瑞禧生物科技有限公司怎么样 浏览:906
武大的分析化学怎么样 浏览:1230
ige电化学发光偏高怎么办 浏览:1319
学而思初中英语和语文怎么样 浏览:1626
下列哪个水飞蓟素化学结构 浏览:1408
化学理学哪些专业好 浏览:1471
数学中的棱的意思是什么 浏览:1036