1. 数学学习的书籍
《10000个科学难题》序
前言
奥特(Vaught)猜想与拓扑奥特猜想
超紧基数典型内模型问题
递归可枚举度中的格嵌入问题和双量词理论可判定性问题
高层有限波雷尔(Borel)等价关系中的两个问题
极小塔问题
r=rω?及s=sω?
连续统势确定问题
奇异基数问题
萨克斯(Sacks)关于波斯特(Post)问题的度不变解问题和马丁(Martin)猜想
图灵(Turing)等价问题
图灵(Turing)度的自同构问题
是否存在一个稳定的一阶完全理论,它有大于一的有穷多个可数模型
Cherlin-zilber猜想
带指数函数的实数理论的可判定性问题
Shelalh唯一性猜想
微分封闭域上的平凡强极小集
3-Calabi-Yau代数的分类
阿廷(Artin)群的Grobner-Shirshov基
布如意(Broue)交换亏群猜想
布朗(Brown)问题
凯莱(Cayley)图和相关的问题
福克斯(Foulkes)猜想
戈伦斯坦(Gorenstein)对称猜想
卡普兰斯基(Kaplansky)第六猜想
中山(Nakayama)猜想和广义中山(Nakayama)猜想
拉姆拉斯(Ramras)问题
Smashing子范畴上的公开问题
巴斯-奎伦(Bass-Quillen)猜想
非半单Brauer代数的表示理论
非交换曲面的分类
关于码交换等价于前缀码的猜测
关于半群上一类重要同余的一个系列推广模式
关于有限码具有有限完备化的判定问题
关于正则半群的两个嵌入问题
广义倾斜模中的两个猜想
考克斯特群的胞腔
满足正规子群极小条件的可解群的Fitting子群是否是幂零的?
模代数smash积的半素性
球极函数的提升Pieri型公式
稳定等价猜想
一些代数的Grobner-Shirshov基
由导出范畴建立量子群和典范基
有限维数猜想
ABC猜测
巴斯(Bass)猜想和索尔(Soule)猜想
Lichtenbaum猜想
里德一所罗门(Reed-Solomon)码的译码问题
沙努尔(Schanuel)猜想
哥德巴赫(Goldbach)猜想
关于不同模覆盖系的厄尔多斯(Erdos)问题
关于倒数和发散序列的厄尔多斯图兰(Erdos-Turan)猜想
关于奇数阶阿贝尔(Abel)群的Snevily猜想
关于有限域上代数曲线点数的Drinfeld-Vladt界
朗兰兹(Langlands)纲领
类数1实二次域的高斯猜想
黎曼(Riemann)zeta函数在奇正整数点处值的超越性
黎曼(Riemann)猜想
欧拉常数的超越性
椭圆曲线的BSD猜想
希尔伯特第九问题:高斯二次互反律如何推广
希尔伯特第十二问题:构作数域的最大阿贝尔扩域
岩泽(Iwasawa)理论的主猜想
……
编后记
2. 中国古代数学专着有哪些
中国古代数学专着有:
1、《九章算术》
《九章算术》其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。
《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史着作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。
2、《周髀算经》
《周髀算经》原名《周髀》,是算经的十书之一。中国最古老的天文学和数学着作,约成书于公元前1世纪,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。
《周髀算经》在数学上的主要成就是介绍了勾股定理。(据说原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的)及其在测量上的应用以及怎样引用到天文计算。)
3、《海岛算经》
《海岛算经》是中国学者编撰的最早一部测量数学着作,亦为地图学提供了数学基础。由刘徽于三国魏景元四年(公元263年)所撰,本为《九章算术注》之第十卷,题为《重差》。
唐初开始单行,体例亦是以应用问题集的形式。研究的对象全是有关高与距离的测量,所使用的工具也都是利用垂直关系所连接起来的测竿与横棒。有人说是实用三角法的启蒙,不过其内容并未涉及三角学中的正余弦概念。所有问题都是利用两次或多次测望所得的数据,来推算可望而不可及的目标的高、深、广、远。
4、《张丘建算经》
《张丘建算经》,中国古代数学着作。(约公元5世纪)现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。
自张邱建以后,中国数学家对百鸡问题的研究不断深入,百鸡问题也几乎成了不定方程的代名词,从宋代到清代围绕百鸡问题的数学研究取得了很好的成就。
5、《缉古算经》
《缉古算经》 ,中国古代数学着作之一,王孝通撰。他是唐代初期数学家。根据《旧唐书》、《新唐书》以及《唐会要》的记载,王孝通出身于平民,唐高祖武德年间(公元623年前后)担任算学博士,奉命与吏部郎中祖孝孙校勘傅仁钧制订的《戊寅历》,提出异议30余条,被提升为太史丞。
王孝通把毕生的精力都用在数学的研究方面。称得上是这一时期最伟大的数学家。他的最大贡献是在总结前人研究的基础上,写作了《缉古算术》。
3. 有哪些数学着作
科普类:
1 拓扑学奇趣,[苏联]伏.巴尔佳斯基,伏.叶弗来莫维契编着,裘光明译
2 拓扑学的首要概念 作者:(美)陈锡驹(W.G.Chinn), (美)斯廷路德(N.E.Steenrod)着 一般附注:据1966年英文版译
3 Famous Problems of Elementary Geometry 作 者(德)克莱因(F. Kiein) , 译 者 沈一兵
4 奇妙而有趣的几何 作 者 韦尔斯
5 几何学的故事 作者:列昂纳多·姆洛迪诺夫
6 近代欧氏几何学 作者:(美)R·A·约翰逊着、单壿译
7 《古今数学思想》, (美)莫里斯·克莱因着,张理京等译 共4册
8 《数学,确定性的丧失》 作者:(美)克莱因 着,李宏魁 译
9 数学珍宝:历史文献精选 着 作 者: 李文林
10《几何学的新探索》 作者:(英)考克瑟特(Doxeter,H.S.M.), (美)格雷策(Greitzer,S.L.)着
11 几何的有名定理 作者:(日)矢野健太郎着
12 什么是数学 作者:(美)R·柯,H·罗宾 着,I·斯图尔特 修订,左平,张饴慈 译
13 《证明与反驳》 作者:伊姆雷.拉卡托斯
14 数学与猜想(共两卷) G.波利亚,
15 《数学的发现》 作者:(美)乔治·波利亚 着, 刘景麟 等译
16 《怎样解题》 作者:(美)G·波利亚|译者:涂泓//冯承天
17 数学——它的内容,方法和意义(共三卷) 原出版社 USSR Academy 作 者 [俄]A.D.亚历山大洛夫 译 者 孙小礼, 赵孟养 裘光明 严士健
18 圆锥曲线的几何性质----通俗数学名着译丛 作者:英国)a科克肖特
19 东西数学物语 作者:(日)平山谛 着,代钦 译 丛书名: 通俗数学名着译丛
20 来自圣经的证明(第3版)(英文版) 作者:(德)艾格尼,(德)齐格勒 着
21 计算出人意料(从开普勒到托姆的时间图景) 作者:伊法儿.埃克郎
22 爱丽丝漫游数学奇境 作者:(日)钓 浩康 着,吴方 译
23 费马大定理 又名: Fermat's Last Theorem 作者: (英)西蒙?辛格 译者: 薛密 副标题: 一个困惑了世间智者358年的谜
24 100个着名数学问题
25 数学中的智巧
26 可怕的科学《经典数学》系列 北京少年儿童出版社 尼克.阿诺德【英】等
传记类:
1 《数字情种》(爱多士传) 作者:保罗.霍夫曼
2 《我的大脑敞开了——天才数学家保罗·爱多士传奇》 作者布鲁斯.谢克特[美]
3 《女数学家传奇》 作者:徐品方
4 《一个数学家的辩白》 作者: 哈代 译者: 王希勇
5 《数学大师》 译者: 徐源 作者: (美)E·T·贝尔 副标题: 从芝诺到庞加莱
6 现代数学家传略辞典 作 者 张奠宙
7 世界着名数学家传记(上、下集) 作 者 吴文俊
8 数学精英
9 最后的炼金术士——牛顿传 作者 (英)怀特
专业:
1 《从微分观点看拓扑》J.W.米尔诺
2 无穷小分析引论 Introction to analysis of the infinite [作者]:欧拉
3 《自然哲学之数学原理》 作者:艾萨克.牛顿
4 几何原本(13卷视图全本) 作者:(古希腊)欧几里得原着, 燕晓东编译
5 《数论报告》希尔伯特
6 《算术研究》高斯
7 《代数几何原理》哈里斯(Harris)
8. 《微积分学教程》菲赫金哥尔兹
9. 《有限群表示》J.P.塞尔
10. 《曲线和曲面的微分几何》杜卡谟
11. 《曲面论》达布
12. 《数论导引》华罗庚
13. 《代数学基础》贾柯伯逊
14. 《交换代数》阿蒂亚
4. 着名的数学着作有哪些
1、《张丘建算经》:中国古代数学着作。(约公元5世纪)现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。自张邱建以后,中国数学家对百鸡问题的研究不断深入,百鸡问题也几乎成了不定方程的代名词,从宋代到清代围绕百鸡问题的数学研究取得了很好的成就。
2、《四元玉鉴》:《四元玉鉴》是元代杰出数学家朱世杰的代表作,其中的成果被视为中国筹算系统发展的顶峰。它是一部成就辉煌的数学名着,受到近代数学史研究者的高度评价,认为是中国数学着作中最重要的一部,同时也是中世纪最杰出的数学着作之一。
但其美中不足的是,在四元玉鉴中,对于一些重要的问题如求解高次联立方程组的消去法等解说过于简略,并且对于书中每一个问题的解法也没有列出详细的演算过程,故比较深奥,人们很难读懂。以致于自朱世杰之后,中国这种在数学上高度发展的局面不但没有保持发展下去,反而很多成就在明、清的一段时期内几乎失传。
3、《数书九章》:《数书九章》是对《九章算术》的继承和发展,概括了宋元时期中国传统数学的主要成就,标志着中国古代数学的高峰。当它还是抄本时就先后被收入《永乐大典》和《四库全书》。1842年第一次印刷后即在中国民间广泛流传。
《数书九章》最初叫《数术大略》或《数学大略》(9卷),分为9类,每类为一卷。约到元代时更名为《数学九章》,内容也由9卷改为18卷。明初抄本被收入《永乐大典》(1408),另抄本藏于文渊阁。明代学者王应遴传抄时定名为《数书九章》,明末学者赵琦美再抄时沿用此名。抄本形式流传到清代,1781年由李锐校订后收入《四库全书》。
4、《九章算术》:《九章算术》确定了中国古代数学的框架,以计算为中心的特点,密切联系实际,以解决人们生产、生活中的数学问题为目的的风格。
该书内容十分丰富,全书总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史着作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。
5、《孙子算经》:《孙子算经》是中国古代重要的数学着作。成书大约在四、五世纪,也就是大约一千五百年前,作者生平和编写年不详。传本的《孙子算经》共三卷。
卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法。卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。