⑴ 古典控制理论中控制系统的数学模型有哪几种形式
微分方程,传递函数,结构图,信号流图
⑵ 自动控制系统中数学模型的作用及常见形式有哪些
在控制系统的分析和设计中,首先要建立系统的数学模型.控制系统的数学模型是描述系统内部物理量(或变量)之间关系的数学表达式.在静态条件下(即变量各阶导数为零),描述变量之间关系的代数方程叫静态数学模型;而描述变量各阶导数之间关系的微分方程叫数学模型.如果已知输入量及变量的初始条件,对微分方程求解就可以得到系统输出量的表达式,并由此可对系统进行性能分析.因此,建立控制系统的数学模型是分析和设计控制系统的首要工作
建立控制系统数学模型的方法有分析法和实验法两种.分析法是对系统各部分的运动机理进行分析,根据它们所依据的物理规律或化学规律分别列写相应的运动方程.例如,电学中有基尔霍夫定律,力学中有牛顿定律,热力学中有热力学定律等.实验法是人为地给系统施加某种测试信号,记录其输出响应,并用适当的数学模型去逼近,这种方法称为系统辨识.近几年来,系统辨识已发展成一门独立的学科分支,本章重点研究用分析法建立系统数学模型的方法.
在自动控制理论中,数学模型有多种形式.时域中常用的数学模型有微分方程、差分方程和状态方程;复数域中有传递函数、结构图;频域中有频率特性等.
⑶ 线性控制系统的数学模型有哪些表示形式哪些属于输入输出描述,哪些属于内部描
描述控制系统输入、输出变量以及内部各变量之间关系的数学表达式,称为系统的数学模型。常用的数学模型有微分方程、差分方程、传递函数、脉冲传递函数和状态空间表达式等。系统数学模型的建立,一般采用解析法或实验法。解析法是依据系统各变量之间所遵循的基本定律,列写出变量间的数学表达式,从而建立系统的数学模型。
⑷ 控制系统的时域数学模型是什么
在自动控制理论中 ,时域中常用的数学模型有 微分方程,差分方程,状态方程。
而复数域中有传递函数,结构图。
频域中有频率特性。