Ⅰ 数学历史是怎么演变而来的
数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点.数学的希腊语μαθηματικός(mathematikós)意思是“学问的基础”,源于μάθημα(máthema)(“科学,知识,学问”).
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.
(1)第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年.算术(加减乘除)也自然而然地产生了.古代的石碑亦证实了当时已有几何的知识.
(2)更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普.历史上曾有过许多且分歧的记数系统.
从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究.
(3)到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备.17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在研究经典力学的过程中,微积分的方法被发明.随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展.
数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处.数学在历史上有着许多的发现,并且直至今日都还不断地发现中.依据Mikhail B.Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目.此一学海的绝大部份为新的数学定理及其证明.”
Ⅱ 什么是数学史
中国数学史
数学是中国古代科学中一门重要的学科,它的历史悠久,成就辉煌。根据它本身发展的特点,可以分为五个时期:
①中国古代数学的萌芽;
②中国古代数学体系的形成;
③中国古代数学的发展;
④中国古代数学的繁荣;
⑤中西方数学的融合
Ⅲ 数学史的意义是什么
数学史是研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。它所研究的内容是:
1,数学史研究方法论问题;2,总的学科发展史 ── 数学史通史;3,数学各分支的分科史(包括细小分支的历史) ;4, 不同国家、民族、地区的数学史及其比较 ;5, 不同时期的断代数学史 ;6, 数学家传记 ;7, 数学思想、数学概念、数学方法发展的历史;8,数学发展与其他科学、社会现象之间的关系;9,数学教育史;10,数学史文献学;等
(一)科学意义及作用
每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则。
(二)文化意义及作用
“数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说”。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。
(三)教育意义及作用
当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。
中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。
Ⅳ 数学史的意义是什么
数学史的意义
数学作为一种文化,在人类文明史上占有特殊的地位。
首先,数学以抽象的形式,追求高度精确、可靠的知识。其次,数学作为一种创造性活动,还具有艺术的特征,对美的追求。
数学史不是单纯的数学成就的编年记录,而是数学家在自然科学领域内克服困难、战胜危机和发现真理的斗争记录。
因此,不了解数学史就不可能全面了解数学科学,也就不可能全面了解整个人类文明史。
Ⅳ 数学是怎么产生的,它的发展历史是什么
产生:数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题
数学的发展史大致可以分为四个时期。
1、第一时期
数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
2、第二时期
初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。
3、第三时期
变量数学时期。变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus),即高等数学中研究函数的微分。
4、第四时期
现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
(5)什么叫数学史扩展阅读:
发展过程中研究出的数学成果:
1、李氏恒定式
数学家李善兰在级数求和方面的研究成果,在国际上被命名为李氏恒定式。
2、华氏定理
华氏定理是我国着名数学家华罗庚的研究成果。华氏定理为:体的半自同构必是自同构自同体或反同体。数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。
Ⅵ 数学史对数学教育意义有什么意义
数学史既属史学领域,又属数学科学领域,因此数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段;
在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是“古”与“今”间的一种联系。
数学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。
通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
(6)什么叫数学史扩展阅读:
数学史的研究范围:
按研究的范围又可分为内史和外史:
1、内史:从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;
2、外史:从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。
数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。
从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。
从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。
Ⅶ 数学史是如何分期的各个时期有什么特点
数学史的分期或发展过程 数学史的分期也是讲述数学史时必然会遇到的问题,它实际上设计按怎样的线索来描述数学发展的历史。
不同的线索将给出不同的分期,通常采用的线索如: 1.按时代顺序 2.按数学对象,方法等本身的质变过程 3.按数学发展的社会背景等等。由于数学的发展是一个错综复杂的只是过程与社会过程,用单一的线索贯穿难免有会有偏颇,因此一般数学通史着作往往采取以某一线索为主,同时兼顾其他因素的做法。分期问题的深入讨论属于数学史专门研究的范围,而且存在许多争议。对数学史作出如下分期: 1.数学的起源与早期发展(公元前6世纪) 2.初等数学时期(公元前6世纪——16世纪) ①古代希腊数学(公元前6世纪——6世纪) ②中世纪东方数学(3世纪——15世纪) ③欧洲文艺复兴时期(15世纪——16世纪) 3.近代数学时期(或称变量数学建立时期,17世纪——18世纪) 4.现代数学时期(1820——现在) ①现代数学酝酿时期(1820——1870) ②现代数学形成时期(1870——1940) ③现代数学繁荣时期(或称当代数学时期,1950——现在) 特别说明的是,关于现代数学的起始与划分,目前分歧较大。