导航:首页 > 数字科学 > 数学史研究主要有哪些内容

数学史研究主要有哪些内容

发布时间:2023-08-16 21:17:07

‘壹’ 数学史是如何分期的各个时期有什么特点

数学史的分期或发展过程 数学史的分期也是讲述数学史时必然会遇到的问题,它实际上设计按怎样的线索来描述数学发展的历史。
不同的线索将给出不同的分期,通常采用的线索如: 1.按时代顺序 2.按数学对象,方法等本身的质变过程 3.按数学发展的社会背景等等。由于数学的发展是一个错综复杂的只是过程与社会过程,用单一的线索贯穿难免有会有偏颇,因此一般数学通史着作往往采取以某一线索为主,同时兼顾其他因素的做法。分期问题的深入讨论属于数学史专门研究的范围,而且存在许多争议。对数学史作出如下分期: 1.数学的起源与早期发展(公元前6世纪) 2.初等数学时期(公元前6世纪——16世纪) ①古代希腊数学(公元前6世纪——6世纪) ②中世纪东方数学(3世纪——15世纪) ③欧洲文艺复兴时期(15世纪——16世纪) 3.近代数学时期(或称变量数学建立时期,17世纪——18世纪) 4.现代数学时期(1820——现在) ①现代数学酝酿时期(1820——1870) ②现代数学形成时期(1870——1940) ③现代数学繁荣时期(或称当代数学时期,1950——现在) 特别说明的是,关于现代数学的起始与划分,目前分歧较大。

‘贰’ 数学史研究的内容包括哪些

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。
数学史既属史学领域,又属数学科学领域,因此数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段,在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。

‘叁’ 小学数学中有哪些数学史

新课改以来我国数学教材呈现出了繁荣的景象,而数学史也在各种版本的小学数学教材中不断渗透,并且成为新时期数学教材的新亮点。教材中渗透的数学史方式众多,主要体现在数学的传承性与融合性与数学的应用性,即对其他学科的发展与社会生活的影响等。具体可分为四类:其一遵从数学史的发生发展规律按照时间维度进行渗透;其二按照数学发展进程中不同国家或地区的卓越贡献进行渗透;其三从数学与学科之间的紧密关系进行渗透其;四从数学对社会生活的影响方面进行渗透。
从整体分布上看,除六年级第二学期外,人教版在一二年级和四年级第二学期没有安排数学史,苏教版在一二年级、三年级第一学期和五年级第一学期没有安排数学史。但是,西师版教材从一年级就开始渗透数学史,每册均有安排,体现出一定的连续性,使数学史凸现出来,显现出数学史的独特性和整体性。
数学史之于数学教学的价值,早在19 世纪就被一些西方数学家所认识。1972年,在第二届国际数学教育大会上,成立了数学史与数 学教学国际研究小组,简称HPM。三十多年来,随着HPM研究的不断 深人,数学史和数学教学的结合已是一种国际数学课程改革的趋势。数学史走进小学数学课堂是一种必然,但这种必然和现实相比,有很大的反差。在原先的教学设计之外,加一点数学史的知识,借以给课 堂增加些文化色彩。这种方式是否充分展示了数学史的教育价值?总之,数学史怎样进入小学数学课堂,已是理论演绎和实践反思双向互 动中生成的迫切课题。
二. 数学史在小学教材的内容及设计
小学数学教材中数学史的类型主要有数学家的趣闻轶事,数学家解决问题的故事,相关数学知识史料,以及经典数学问题等。3种版本教材也都不同程度选用了数学家的故事进行介绍。其中,西师版教材还特别添加了标题以突出主题,如“着名数学家华罗庚”、“聪明的高斯”、以及 “圆周率之父祖冲之”等。
小学数学史内容选择、分布和篇幅容量体现了小学数学教材中数学史内容的外部特点,而对数学史的具体编排设计却体现了它的内部特点,即怎样设计才能使数学史更好地在小学数学课程教学中发挥其教育教学功能。
目前数学史内容设计主要有两种模式,即“阅读材料式数学史”和“习题内容引出数学史”设计模式。我们认为可以增加“学习内容引出数学史”和“数学史引出学习内容”两种设计模式,它们与前两种本质的不同在于,数学史内容被请进了小学数学知识体系的核心殿堂,而不是边缘化于学习内容。“学习内容引出数学史”模式以学习内容为主线,数学史作为学习内容的注解和阐释,能够丰富学习内容的内涵,为数学知识的学习增添绚丽色彩,使儿童在学习数学知识的同时体验数学的历史厚重感和美感。“数学史引出学习内容”模式是用数学史引领数学知识的学习,使儿童置身于历史境遇中,与文本达成视界融合,形成对数学知识的历史性理解。
低段儿童自主阅读能力较弱,数学史的学习更多依赖教师的引导。因此,数学史的设计模式要有利于教师更好地设计和实施教学,“习题内容引出数学史”、“学习内容引出数学史”和“数学史引出学习内容”设计模式便可以做到这点,页面可以稍小。中段可以综合运用4种设计模式,逐步由多采用“习题内容引出数学史”、“学习内容引出数学史”和“数学史引出学习内容”模式向多采用“阅读材料式数学史”模式过渡。高段可逐步采用“阅读材料式数学史”模式进行编排设计,页面最好充足,随着学生社会化程度的提高以及在低段所接受的数学史渗透,只要教师能够恰当引导,就能发挥极好的作用。当然,以阅读材料形式呈现,最好明确注明标题以突出主题,另外,还可适当提供相关书目和网站,利于学生拓展学习空间。
三、数学史在小学教材的意义
考虑到小学生的各方面特征,因此在数学史的呈现形式上要尽可能地丰富,以激起学生从小学好数学的兴趣。比如可适当增加些连环画这种呈现形式,使得数学史更具有可读性。有条件的还可以摄制相关视频以光盘形式附在书后,使学生更形象、更直观地接触数学史,对其产生深刻的印象。
传统数学课本以及现行教材中均有少量数学史材料, 或以数学趣题引入新的内容, 或插入某位数学家的画像并简介其生平,或是在课文之后附加一则阅读材料。数学课本可以将历史上的数学小故事作为问题情境引出新内容,来鼓励学生热爱数学、勤奋学习, 例如阿基米德在死神降临之时仍醉心于数学研究,欧拉双目失明后通过记忆和心算仍有大量成果问世等等。不过, 除了这种简单的拼凑处理外, 更多地应将数学史料(尤其是数学的思想方法) 有机地渗透融合到课程中。
为了数学教学的价值取向同样研究数学史,为了历史和为了教学这是两种完全不同的价值取向。我们现在所看到的绝大多数数学史,立论之基都是为了史,所以更关注史实的真伪,所研究的内容也更多的是数学发展史上重要的数学事件、数学人物。而为了教学的数学史研读,是为了站在历史的高度,厘清知识的来龙去脉、数学思想的演进走向,更好地把握住所教数学知识的知性本质,以求得我们的数学教育能注人深刻和厚重。所以,为了教学的数学史读,是立足于现实 中的“人”而去关注历史中的“人”和“事”。要通过历史上不同数学事件的比较,提炼数学思想发展的规律,不断优化自己的数学观念( 例如,根据数学中很多重要概念在其诞生之际都是直观具体、不系统的史实,继而确立数学知识的儿童化处理是极其重要的教学技 巧 的观念);要透过某知识历史演进的脉络,提炼出人类认识逐步提升 的序(例如,读代数的发展历史,可以概括出人类认识大致经历了文辞代数、缩写代数、符号代数三个阶段)。要善于抓住历史的表象,立足于认识论的角度多些追问(例如,数的认识过程都是漫长的,但人类认识负数为什么比起认识自然数和分数来得更为曲折和艰难? 要透过历史上人类认识曾经走过 的弯路、数学家们的挫折和困惑,提炼出人类认识某知识的障碍(这些挫折恰恰也就是学生的认知难点);要立足于“给孩子们正确的数学观念和良好的学习情感”的视角,捕捉有教育意义的历史故事和历史事件。研读所依据的材料不是原始的数学史料和文物,而是各种版次的数学史着作;研读方法上要围绕同一个事件,研读不同版本的数学史,从不同的数学史着作中丰富此数学事件的内涵,更要参考数学史上数学家的传记等资料,通过历史上典型个体的思维过程的细述,用多种资料相互考证和补充,从而“复原”古人的数学思想方法和思维提升历程。

‘肆’ 数学史的历史介绍

数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与文化本质。作为数学史研究的基该方法与手段,常有历史考证、数理分析、比较研究等方法。
史学家的职责就是根据史料来叙述历史,求实是史学的基本准则。从17世纪始,西方历史学便形成了考据学,在中国出现更早,尤鼎盛于清代乾嘉时期,时至今日仍为历史研究之主要方法,只不过随着时代的进步,考据方法在不断改进,应用范围在不断拓宽而已。当然,应该认识到,史料存在真伪,考证过程中涉及到考证者的心理状态,这就必然影响到考证材料的取舍与考证的结果。就是说,历史考证结论的真实性是相对的。同时又应该认识到,考据也非史学研究的最终目的,数学史研究又不能为考证而考证。
不会比较就不会思考,而且所有的科学思考与调查都不可缺少比较,或者说,比较是认识的开始。今日世界的发展是多极的,不同国家和地区、不同民族之间在文化交流中共同发展,因而随着多元化世界文明史研究的展开与西方中心论观念的淡化,异质的区域文明日益受到重视,从而不同地域的数学文化的比较以及数学交流史研究也日趋活跃。数学史的比较研究往往围绕数学成果、数学科学范式、数学发展的社会背景等三方面而展开。
数学史既属史学领域,又属数学科学领域,因此,数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段,在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是“古”与“今”间的一种联系。 ①古希腊曾有人写过《几何学史》,未能流传下来。
②5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。
③中世纪阿拉伯国家的一些传记作品和数学着作中,讲述到一些数学家的生平以及其他有关数学史的材料。
④12世纪时,古希腊和中世纪阿拉伯数学书籍传入西欧。这些着作的翻译既是数学研究,也是对古典数学着作的整理和保存。 是从18世纪,由J.蒙蒂克拉、C.博絮埃、A.C.克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。
1、通史研究
代表作可以举出M.B.康托尔的《数学史讲义》(4卷,1880~1908)以及C.B.博耶(1894、1919D.E.史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的着作。法国的布尔巴基学派写了一部数学史收入《数学原理》。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国M.克莱因所着《古今数学思想》一书,是70年代以来的一部佳作。
2、古希腊史
许多古希腊数学家的着作被译成现代文字,在这方面作出了成绩的有J.L.海贝格、胡尔奇、T.L.希思等人。洛里亚和希思还写出了古希腊数学通史。20世纪30年代起,着名的代数学家范·德·瓦尔登在古希腊数学史方面也作出成绩。60年代以来匈牙利的A.萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。
3、古埃及史
把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所着的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合着,1945)都是这方面的权威性着作。他所着《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范·德·瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性着作之一。
4、断代史
德国数学家(C.)F.克莱因着的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家让·亚历山大·欧仁·迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专着并不多,但却有(C.H.)H.外尔写的《半个世纪的数学》之类的着名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特数学问题的历史等,有多种专着出现,而且不乏名家手笔。许多着名数学家参与数学史的研究,可能是基于(J.-)H.庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。”
5、数学家传
以及他们的全集与《选集》的整理和出版,这是数学史研究的大量工作之一。此外还有多种《数学经典论着选读》出现,辑录了历代数学家成名之作的珍贵片断。
6、数学杂志
最早出现于19世纪末,M.B.康托尔(1877~1913,30卷)和洛里亚(1898~1922,21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。 中国以历史传统悠久而着称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书·律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索隐,钩深致远,莫不用焉”。《隋书·律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。
在中国古算书的序、跋中,经常出现数学史的内容。
如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。
以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1849)、沈钦裴(1829年校算《四元玉鉴》)、罗士琳(1789~1853)等人 ②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。
利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的 经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专着出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专着一道,都是权威性着作。
从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨着《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。

阅读全文

与数学史研究主要有哪些内容相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:698
乙酸乙酯化学式怎么算 浏览:1367
沈阳初中的数学是什么版本的 浏览:1313
华为手机家人共享如何查看地理位置 浏览:1006
一氧化碳还原氧化铝化学方程式怎么配平 浏览:843
数学c什么意思是什么意思是什么 浏览:1364
中考初中地理如何补 浏览:1255
360浏览器历史在哪里下载迅雷下载 浏览:666
数学奥数卡怎么办 浏览:1344
如何回答地理是什么 浏览:986
win7如何删除电脑文件浏览历史 浏览:1017
大学物理实验干什么用的到 浏览:1443
二年级上册数学框框怎么填 浏览:1655
西安瑞禧生物科技有限公司怎么样 浏览:810
武大的分析化学怎么样 浏览:1207
ige电化学发光偏高怎么办 浏览:1295
学而思初中英语和语文怎么样 浏览:1601
下列哪个水飞蓟素化学结构 浏览:1382
化学理学哪些专业好 浏览:1447
数学中的棱的意思是什么 浏览:1013