❶ 数学的基本思想
一、讲授法
三大好处:面积大、见效快、好操作
辩证的思想看问题
二、数学的基本思想
数学基本思想有三,分别为抽象、推理、模型。有的里面还增加一项审美。
1.抽象
分类,集合,对应,变中有不变,符号化,有限无限
2.推理
归纳,演绎,类比,数形结合,逐步逼近,化归,运筹,公理化
3.模型
量化,简化,优化,函数,方程,统计
❷ 常见的数学思想有哪些
1、符号化思想
在数学教学中,各种量的关系、量的变化以及在量与量之间进行推导和演算,都是以符号形式(包括字母、数字、图形与图表以及各种特定的符号)来表示,即运行着一套形式化的数学语言。
2、分类思想
以比较为基础,按照事物间性质的异同,将相同性质的对象归入一类,不同性质的对象归入不同类别——这就是分类,也称划分。数学的分类思想体现对数学对象的分类及其分类标准。
3、函数思想
函数概念深刻地反映了客观世界的运动变化与实际事物的量与量之间的依存关系。
它告诉人们一切事物都在不断地变化着,而且相互联系、相互制约,从而了解事物的变化趋势及其运动规律。对于函数,《标准》提出了学生各个学段的要求,结合实验教材,小学中年级的要求是“探索具体问题中的数量关系和变化规律”“通过简单实例,了解常量和变量的意义”。
4、化归思想
“化归”就是转化和归结。在解决数学问题时,人们常常是将需要解决的问题,通过某种转化手段,归结为另一个相对比较容易解决的或者已经有解决程序的问题,以求得问题的解答。在小学数学中处处都体现出化归的思想,它是解决问题的一种最基本,最常用的思想方法。
5、归纳思想
研究一般性问题时,先研究几个简单、个别的、特殊的情况,从中归纳出一般的规律和性质,这种从特殊到一般的思维方式被称为归纳思想。
归纳法分为不完全归纳法和完全归纳法两种。小学阶段学生接触较多是不完全归纳法。教学四年级上册运算律(以加法交换律和加法结合律为例),就采用了不完全归纳法展开了教学。
6、优化思想
“多中选优,择优而用”既是一种自然规律,又是一种好的思想方法。算法多样化是解决问题策略多样化的一种重要体现。计算长方形的周长是一题多解,求同存异,在对的方法中要选择最好的方法,弄清对的与好的,选择好的。
在教学中渗透优化的策略和方法,及时引导学生对各种方法进行评价与反思,通过对各种不同方法的辨析、比较,帮助学生认识不同方法的特点与优势,达到“去伪存真、去粗存精”的目的,培养学生“多中选优,择优而用”的优化意识,构建数学知识,实现对知识的优化和系统化。
7、数形结合思想
数学是研究现实世界的空间形式和数量关系的科学。数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想。
❸ 数学思想包括哪些内容
数学思想包括的内容有:
函数方程思想:
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。
整体思想:
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。
化归思想:
在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。三角函数,几何变换,因式分解,解析几何,微积分,乃至古代数学的尺规作图等数学理论无不渗透着转化的思想。
隐含条件思想:
没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。
类比思想:
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
建模思想:
为了更具科学性,逻辑性,客观性和可重复性地描述一个实际现象,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
归纳推理思想:
由某类事物的部配盯烂分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理。
极限思想:
极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的。
❹ 常见的数学思想有哪些
数学思想,是现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。那么常见的数学思想有哪些?
1、 符号化思想:在数学教学中,各种量的关系、量的变化以及在量与量之间进行推导和演算,都是以符号形式(包括字母、数字、图形与图表以及各种特定的符号)来表示,即运行着一套形式化的数学语言。
2、 分类思想:以比较为基础,按照事物间性质的异同,将相同性质的对象归入一类,不同性质的对象归入不同类别——这就是分类,也称划分。数学的分类思想体现对数学对象的分类及其分类标准。
3、 函数思想:函数概念深刻地反映了客观世界的运动变化与实际事物的量与量之间的依存关系。
4、 化归思想:“化归”就是转化和归结。在解决数学问题时,人们常常是将需要解决的问题,通过某种转化手段,归结为另一个相对比较容易解决的或者已经有解决程序的问题,以求得问题的解答。在小学数学中处处都体现出化归的思想,它是解决问题的一种最基本,最常用的思想方法。
5、 归纳思想:研究一般性问题时,先研究几个简单、个别的、特殊的情况,从中归纳出一般的规律和性质,这种从特殊到一般的思维方式被称为归纳思想。
6、 优化思想:“多中选优,择优而用”既是一种自然规律,又是一种好的思想方法。算法多样化是解决问题策略多样化的一种重要体现。计算长方形的周长是一题多解,求同存异,在对的方法中要选择最好的方法,弄清对的与好的,选择好的。
7、 数形结合思想:数学是研究现实世界的空间形式和数量关系的科学。数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想。
关于常见的数学思想有哪些的内容就介绍到这了。
❺ 数学思想包括哪些内容
数学思想包括的内容如下:
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、型祥猛比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
5、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,宴信若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、集卜桥合思想方法
集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法
小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
❻ 数学的基本思想具体有哪些
数学的基本思想主要有下面的三个:一个是数学抽象的思想,一个是数学推理的思想,一个是数学建模的思想。
在基本思想下一层还有很多数学思想。例如像数学抽象的思想才能产生出来分类的思想、集合的思想、数形结合的思想、符号表示的思想、对称的思想、对应的思想、有限与无限的思想等等。在基本思想下面会派生出来很多的思想。
例如数学推理的思想,还能派生像归纳的思想,演绎的思想,公理化的思想,转化的思想,类比的思想,逐步逼近的思想,代换的思想,特殊一般的思想,等等。
例如像数学建模的思想,还能进一步派生出来,像简化的思想,量化的思想,函数的思想,方程的思想,优化的思想,随机的思想,抽样统计的思想等等。
❼ 数学基本思想
数学基本思想有三大类:
抽象思想包括:分类思想、集告竖合思想、数形结袜腊大合思想
推理思想局顷包括:化归思想、演绎思想、特殊与一般思想
模型思想包括:函数思想、方程思想
❽ 什么是数学基本思想
基本思想指的是数学产生与发展所依赖的思想;学习数学以后具有的思维能力(学过数学与没有学过数学的思维差异)。
数学基本思想主要有下面的三个:一个是数学抽象的思想,一个是数学推理的思想,一个是数学建模的思想。