导航:首页 > 数字科学 > 数学分析交给我们什么

数学分析交给我们什么

发布时间:2023-08-22 20:54:43

❶ 学习《数学分析课程》的心得及其领悟到的方法。

2020年春季学期微课郭雨辰数学分析(超清视频)网络网盘

链接: https://pan..com/s/1FRPc9uhG8wDrSeOE2tvbjA

提取码: vn5b 复制这段内容后打开网络网盘手机App,操作更方便哦

若资源有问题欢迎追问~

❷ 数学分析 学了之后的作用是什么在实际应用或者以后什么的

要记住在大学里学的是方法和思想,而不仅仅是证明过程和一些死知识,所以学数学分析是让体会数学的思维方法,为进一步学习打好基础。学数学分析时要仔细分析定理的证明过程,体会一下数学家的思维过程,平时要多做一下题目,加深对知识的理解。

数学的最大特点是具有广泛的应用性。数学源于生活,又广泛应用于生活。在实际生活中运用所学数学知识,处理实际问题是小学生的数学素养之一。

数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。因此,数学教学只有从学生的生活经验出发,让学生在生活中学数学、用数学,数学教学才能焕发生命活力。

(2)数学分析交给我们什么扩展阅读:

数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。

数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本形态,从而形成微分学和积分学的基本内容。微分学研究变化率等函数的局部特征,导数和微分是它的主要概念,求导数的过程就是微分法。围绕着导数与微分的性质、计算和直接应用,形成微分学的主要内容。

❸ 数学教会了我们什么

数学教会了我们运算,推理、分析、判断、选择、估算、统计、绘制图表、数据分析、及空间与图形、优化方案等诸多方面,蕴涵着丰富的数学思想和方法

数学与日常生活具有紧密的联系,是人们生活、工作和学习必不可少的工具,能够帮助人们更好地探索客观世界,寻找客观规律,简单到计算水电费、手机话费、税款、利润与成本的比较以及商业往来中的时间安排、人员分配、资金运用等等都与数学有关。

数学分析中人生哲理

在数学中,一切依赖于基本的公理和逻辑推理,一就是一,错了就是错了。因此,我们应该也可以重视数学教育的求真精神。

一个结果是否正确,学数学的人可以利用已有的被证明的了数学知识进行证明,学数学其实就是利用逻辑建设数学大厦的过程,数学结果是否正确,可以追问逻辑推理是否有误,不需要别人给你当裁判,所以,学数学的学生做题时,往往能够自己判断自己的解答是否有问题。

现在很多人强调数学的重要性,往往是从科技的发展与进步需要数学基础这方面讲的,但社会的发展不仅仅需要科技的进步,也需要类似于有讲真话这样的精神,依我看,数学教育在这方面教育功能更加重要。

❹ 什么是数学分析

‍‍

《数学分析》课程是一门面向数学类专业的基础课。学好数学分析(和高等代数)是学好其他后继数学课程如微分几何,微分方程,复变函数,实变函数与泛函分析,计算方法,概率论与数理统计等课的必备的基础。作为数学系最重要的基础课之一,数学科学的逻辑性和历史继承性决定了数学分析在数学科学中举足轻重的地位,数学的许多新思想,新应用都源于这坚实的基础。数学分析出于对微积分在理论体系上的严格化和精确化,从而确立了在整个自然科学中的基础地位,并运用于自然科学的各个领域。同时,数学研究的主体是经过抽象后的对象,数学的思考方式有鲜明的特色,包括抽象化,逻辑推理,最优分析,符号运算等。这些知识和能力的培养需要通过系统、扎实而严格的基础教育来实现,数学分析课程正是其中最重要的一个环节。我们立足于培养数学基础扎实,知识面宽广,具有创新意识、开拓精神和应用能力,符合新世纪要求的优秀人才。

从人才培养的角度来讲,一个学生能否学好数学,很大程度上决定于他进大学伊始能否将《数学分析》这门课真正学到手。本课程的目标是通过系统的学习与严格的训练,全面掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。微积分理论的产生离不开物理学,天文学,几何学等学科的发展,微积分理论从其产生之日起就显示了巨大的应用活力,所以在数学分析的教学中,应强化微积分与相邻学科之间的联系,强调应用背景,充实理论的应用性内容。数学分析的教学除体现本课程严格的逻辑体系外,也要反映现代数学的发展趋势,吸收和采用现代数学的思想观点与先进的处理方法,提高学生的数学修养。复旦大学有非常好的生源,吸引了众多优秀的学生,使得实现这一培养目标与要求成为可能。另一方面,许多优秀的学生受教学计划限制,学习的是《高等数学》这一课程。但他们对于学习《数学分析》以提高自己的数学修养有着强烈的愿望(其中一部分通过转专业成为数学类专业的学生)。我们推出的《数学分析原理》课程应运而生,为这一部分学生提供了一个恰当的学习提高机会。

‍‍

❺ 数学学出来做什么工作

问题一:学数学专业能做什么工作 你好我也是你那专业的大学生,一下是我曾经收集到的资料,希望你能满意。
数学与应用数学是计算机专业的基础和上升的平台,是与计算机科学与技术联系最为紧密的专业之一。该专业属于基础型专业,就业面较宽,不过考研仍然是该专业毕业生的首选。 在日常生活中,从天气预报到股票涨落,到处充斥着数学的描述和分析方法。北京市需求毕业生人数最多的十大专业中,数学与应用数学专业需求量位居前列。分析上述资料不难看出,数学人才的需求量较大,就业前景看好。而且可以预见,随着经济和社会的发展,市场对数学与应用数学专业人才的需求将会越来越多,其就业前景比较广阔。
由于数学与应用数学专业与其他相关专简老业联系紧密,以它为依托的相近专业可供选择的比较多,因而报考该专业较之其他专业回旋余者咐神地大,重新择业改行也容易得多,有利于将来更好的就业。
合格的软件人才,需要有“扎实的数学功底”,“严密的逻辑思维能力”。
IT业职员:兼顾专业与职业发展需要
就业分析:数学与应用数学专业属于基础专业,是其他相关专业的“母专业”。该专业的毕业生如欲“转行”进入科研数据分析、软件开发、三维动画制作等职业,具备先天的优势。“在改进一个软件的速度、效率,需要新的思想和方法方面,数学高手创新能力比一般计算机专业的学生还要强。”某知名IT公司工程师说。在一项针对IT行业230名成功人士的抽样调查表明,其中200名属于以数学专业或其相关专业为依托实现职业再选择的人。
中国科学院院士王选教授在北大方正软件技术学院开学典礼上,就告诉大学生:要成为一个合格的软件人才,需要有“扎实的数学功底”,“严密的逻辑思维能力”。而严密的逻辑思维能力,来自于深厚扎实的数学功底。可见数学与应用数学专业是从事其他相关专业的基础。
代表职业:程序员
薪酬情况:多数人会从事的程序员工作薪酬水平差距很大。初级程序员的月入一般在两千元左右,做到主管一级,月入可达到五六千元。
案例:成为程序员,我是被逼的――二流学校,不愿意毕业后回家乡教初中数学,英语太滥考研无望,这一切让我不得不把自己转向软件设计方面发展。毕业两年了,虽然在待遇上经历了涨落,但总体来说,还是能让我满意的。
毕业后我去一家公司应聘,当时一共三个人竞争这个职位。面试时,我们的表现都差不多,讲自己的能力如何强,会使用的语言及编程工具如何多,经验如何丰富。
最后导致我胜出的环节在于,招聘方给出了一个资金管理项目问题,要求每个人都在思考后给出自己的设计方案,其中比较核心的一个问题就是要计算一个资金最小波动值的问题,给出的数据量相当大,对效率要求很高。对于整个程序的面向对象化的分析我们都没出问题,毕竟这些东西在学校里是很重视的,而且不是真正的难点。然而到了最关键的问题时他们卡壳了,解决方案中要用到简单的双重循环、时间复杂度(N^2),我的一个竞争对手在冥思苦想后回答:用树。但具体技术细节他却讲不清楚,效率分析非常马虎。只有我,因为在学校就比较喜欢数学,因此当时很快就给出了采取AVL树的方案,并且利用高数推导作出了很详细的效率分析和时空换算,并提出了引入汇编的方法。最后,我得到了这分工作。
总之,具备数学和数据结构方面的扎实基础,是成为编程高手的必备条件。
美国花旗银行副主席保尔・柯斯林说:“一个从事银行业务而不懂数学的人,无非只能做些无关紧要的小事。”
商务人员:专业有优势,职业前景好
就业分析:金融数学家已经是华尔街最抢手的人才之一。最简单的例子是,保险公司中地位和收入最高的,可能就是总精......>>

问题二:数学系出来之后能做什么工作 (这是北大的一个数学博士的感言)葛颢2000.9-2004.7,北京大学数学科学学院概率论与数理统计专业 本科2004.9-2006.7,北京大学数学科学学院概率论与数理统计专业 硕士2006.9-2008.7,北京大学数学科学学院概率论与数理统计专业 博士2008.7-,复旦大学数学科学学院概率论与数理统计专首亏业 讲师,正在讲授《数学分析习题课》自从我八年前(2000年)考入北京大学数学学院之后,这一问题就一直缠绕着我,不论是亲朋好友,还是一面之交,都曾经问过我这个问题。但是我每次做出回答之后,都觉得不但对方对此回答不是非常满意,而且我自己也感觉回答得不清不楚。八年的时间过去了,在我即将博士毕业的前夕,有必要整理整理自己的思路,好好回答一下这个问题。还是先谈谈数学系学点什么吧。一般来说,基础课无非就是学习微积分、线性代数、几何学和概率论等,到了高年级(大三、大四)可以选择专业,大体有基础数学专业、计算数学专业、信息科学专业、概率统计专业和金融数学专业等。其中信息科学专业要学有关计算机科学方面的课程;金融数学专业要学经济和管理学方面的课程。至于研究生阶段,大体和本科阶段的专业相同,只是更专更深而已。很多专业都号称自己属于应用数学的范畴。包括我自己在内,也说是研究应用数学的。那么究竟什么是应用数学呢?其实就是把数学的知识、方法运用于物理、化学、生物乃至金融、工程等其他学科,终极目的是为其他学科的研究提供数学工具和数学思想,从而解决该学科的核心问题,推动科学的进步。但是平心而论,现在很多的应用数学研究仍然只停留在分析和解决其他学科的纯理论问题上面,和该学科的核心问题相去甚远,这也就是为什么理论化学、理论生物学等杂志的影响力有限的原因。很多人会认为金融数学专业是有着很强应用背景的,其实绝大多数的研究成果并不能成为什么有用的分析工具和方法,也只是象牙塔里的印刷品罢了。在这一点上,金融数学和理论物理的情况是一样的,因为理论物理已经和数学融为一体了,部分物理学家也已经完全就是数学家,其理论的物理意义实际上是比较含混不清的。所以我们就可以大体了解到,应用数学和我们生活中说的应用有着天壤之别,能真正转化成生产力的少之又少,大多数仅仅是探索和半成品而已。大概只有计算数学和金融数学专业会承担一些实际的项目,比如产品研发分析和保险精算等,绝大部分数学系的论文的的确确是没有什么应用前景的,至少短时间内还看不出来。但是,请不要误解,以为数学只是数学家自己的游戏,事实上即使数学家本人是在自娱自乐,但是社会并不清楚那块云彩有雨,会有巨大的应用潜力,所以数学家在社会中依然扮演着不可或缺的角色。很多人说,数学是基础,学好了数学学别的都很容易。此话只对了一半,数学系的学生数学基础是很好,但是并不见得学别的都很快。也许在其他学科中涉及到数学的部分能够很快掌握,但是要了解其他学科的精神、思想和方法也需要一个较长的过程,要学很多基础课程的,比我们想象的要困难得多。所以,数学系的学生如果想换专业至少应该在本科毕业的时候实施,等到研究生毕业的时候就显得晚了一些,大好的光阴应该要花在刀刃上。还有就是是否要读博士,不论是在国内还是国外,都要想好之后再做,如果确实不想从事科研或研发工作,那么就请三思而后行,因为数学系不是工科,知识不能直接转化成生产力,以及进一步转化成收入和生活资料。另外,需要数学知识和需要专业的数学人才是两回事情。很多学科所需要的数学只是数学系大学一、二年级的内容,会熟练运用即可,并不需要招收专门的数学人才。所以数学系毕业生能去,且有......>>

问题三:学数学专业将来可以找什么工作? 数学系的学生总体上就业前景是很迷茫的~ 我们同学基本上工作都还没有着落,有招数学系学生的,比如银行、研究所什么的,都是和数字打交道的,我没仔细研究过,因为可能性不是很高。还有就是一些辅导学校,现在家长都舍得花钱了,孩子从小学到高中都有家教什么的陪着,家教只能当 *** ,但是有一些辅导学校找数学老师,你可以试一试。 我们是师范数学,所以大家还有救命稻草――当老师。其实你也可以,只不过要先考一个教师证,考教育学和心理学,具体大几就可以考我没研究过,因为我们毕业就有教师证,但是学校到这个时候到处都贴着海报考教师证的,你可以问一下,能考出来最好,这样可以去当公办老师。也算是个不错的职业,总比在私立辅导学校混好。 还有一个比较好的出路,是我极力推荐你从现在就开始努力的――考研。你可以继续选择读数学的研究生,那样的话考政治、英语、数学分析、高等代数,数分高代是学校出题。数学系的研究生当然比本科生好找工作的很,因为他会细化学习方向,比如概率、密码学、运筹学与控制论等,这样找工作时会有对口的。但我还是建议你转个专业吧~数学系的转专业还是不错的,数学基础好,思维开阔,导师还是很喜欢的。那样的话考政治英语、数学一或二或三,专业课。数学一或二或三一定都是你本科学过的内容,而且浅很多,只是因为不同专业对数学能力的要求不同考察的范围不同,你定下专业后,可以对照查一查要求考哪个。我同学转成经济的多一些,考数三,比较简单,专业考西方经济学什么的,专业课都好突击的,只是现在学经济的太多了,不一定以后会好找工作。我转的交通规划,考数一,最难,但也难不过平常学的,专业的运筹学,所有数学系都会开的,只是有的可能当成选修。还有转成环境工程的,考数二,知识点少很多,起码不靠概率。 数学系学生迷茫是一定的,我也一直迷茫,但是一直决定要考研,只是不知道要考什么。不管怎么说,基础要打好,数分高代,一定学好,这个上哪都能用得着,至于实变复变泛函分析……我是不懂,你要不当数学家,差不多就好。 总之,我的建议是:考研,或当老师。

问题四:学数学可以做什么工作? 做教师、电子商务、会计、行政人员、常见的销售类工作。比如卖保险,房地产。

问题五:数学好的人适合做什么工作? 当然 成为数学老师也ok空间感不错(就是立体几何好)的人 可以去做建筑工程师代数超好的人 去学经济类的 将来出来做会计也很好喜欢数学的统计学的人在很多企业也可以找到对应的部门做统计工作甚至于文科的法律也行 逻辑能力强(证明题百发百中)的人去做律师不错总之 数学是一门能力科学 主要是培养学生各种能力的 根据不同方面先学一些专业 再根据你在数学方面的天赋就业 就一定ok!

问题六:数学专业以后可以做什么工作 数学专业的智商不会差,逻辑能力一般都比较强,就算半路出家做IT也比较容易上手的,家里有关系就应用下,没关系就凭自己能力努力吧。

问题七:数学好的人适合做什么工作? 很多的 想在理论上继续做突破 可以大学报数学系 搞研究 成为一个数学家 不过很难当然 成为数学老师也ok空间感不错(就是立体几何好)的人 可以去做建筑工程师代数超好的人 去学经济类的 将来出来做会计也很好喜欢数学的统计学的人在很多企业也可以找到对应的部门做统计工作甚至于文科的法律也行 逻辑能力强(证明题百发百中)的人去做律师不错总之 数学是一门能力科学 主要是培养学生各种能力的 根据不同方面先学一些专业 再根据你在数学方面的天赋就业 就一定ok!

问题八:数学专业做什么工作好 我是数学与应用专业了(师范类)毕业的。说说我们同学目前的就业吧。
1、转行做IT的(大学期间开始自学,因为数学系逻辑能力强,比较容易接受软件开发);
2、去公立学校当老师(很稳定休假多,除非有额外补习否则工资实在太低);3、私立学校当老师(稳定性差些,比较累,但收入相对丰厚);
4、自己做点小生意或回家帮忙家里打理生意;
个人认为,没有适合与不适合的说法。看你的性格是否做那些行业;有数学基础的人,很多企业还是比较喜欢的,因为比较机灵。(不是因为学了:微积分、线性代数、复变等专业课,其实这些学的都没有用,可用只是从中的部分思维和方法),个人看法。

问题九:数学类专业出来以后可以干什么 数学类主要有三个专业,数学专业,数学与应用数学专业,信息与计算科学专业
数学专业主要就是研究纯粹的数学,在绝大多数人看来应当说是相当枯燥的,但是在像陈景润,华罗庚之类的人看来却是相当有趣的,呵呵
数学与应用数学
专业介绍
业务培养目标:
业务培养目标:本专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。
业务培养要求:本专业学生主要学习数学和应用数学的基础理论、基本方法,受到数学模型、计算机和数学软件方面的基本训练,具有较好的科学素养,初步具备科学研究、教学、解决实际问题及开发软件等方面的基本能力。?
毕业生应获得以下几方面的知识和能力:?
1.具有扎实的数学基础,受到比较严格的科学思维训练,初步掌握数学科学的思想方法;?
2.具有应用数学知识去解决实际问题,特别是建立数学模型的初步能力,了解某一应用领域的基本知识;?
3.能熟练使用计算机(包括常用语言、工具及一些数学软件),具有编触简单应用程序的能力;?
4.了解国家科学技术等有关政策和法规;?
5.了解数学科学的某些新发展和应用前景;?
6.有较强的语言表达能力,掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法,具有一定的科学研究和教学能力。
信息与计算科学
专业介绍
业务培养目标:
业务培养目标:本专业培养具有良好的数学知识,掌握信息科学和计算科学的基本理论和方法,受到科学研究的初步训练,能运用所学知识和熟练的计算机技能解决实际问题,能在科技、教育和经济部门从事研究、教学和应用开发和管理工作的高级专门人才。
业务培养要求:本专业学生主要学习信息科学和计算科学的基本理论、基本知识和基本方法,打好数学基础,受到较扎实的计算机训练,初步具备在信息科学与计算科学领域从事科学研究、解决实际问题及设计开发有关软件的能力。
毕业生应获得以下几方面的知识和能力:
1.具有扎实的数学基础,掌握信息科学和计算科学的基本理论和基本知识;
2.能熟练使用计算机(包括常用语言、工具及一些专用软件),具有基本的算法分析、设计能力和较强的编程能力;
3.了解某个应用领域,能运用所学的理论、方法和技能解决某些科研或生产中的实际课题;
4.对信息科学与计算科学理论、技术及应用的新发展有所了解;
5.掌握文献检索、资料查询的基本方法,具有一定的科学研究和软件开发能力。
后两个专业其实学习的内容已经与软件工程专业差不多了,只不过侧重点略有不同,毕业后也可以到IT企业担任软件工程师等
数学专业需要学习的一些内容,诸如高等数学,离散数学,组合数学,图论等等,想起来就头皮发麻,对于女生..如果不是极其喜欢数学专业最好还是不要报考
数学可以说是最古老的自然科学学科,早在19实际数学就几乎达到了发展的瓶颈,在整个20世纪几乎没特别有重大的数学成就,也不认为数学专业今后会有多大的发展空间
数学专业的毕业生主要还是到科研机构,学校,或者到IT企业就业,随着独生子女政策的成果越来越明显,中国目前对老师的需求量实际已经有所下降,而IT业近几年发展过于迅速,低端人才已经趋紧饱和,如果你在软件方面不具备足够高的水准,也难以到IT企业就业,而科研机构对人员的需求向来比较少
如果你想找不对口的工作,恐怕也很难竞争过专业对口的毕业生吧
......>>

问题十:数学与应用数学就业前景怎么样? 可以从事哪些工作? 一、数学及应用数学专业
应用数学毕业生多数经过进一步深造后,进入国内外大学和研究机构,从事高等研究,主要方向为数学、计算机、信息科学、金融与管理科学等。以后直接进入研究机构、公司从事分析、应用等方面的工作。
国内主要的综合性大学和一些师范大学、理工大学设立有数学系,多数都设立了数学专业。不同学校的数学专业有不同的发展重点。如果志向是在数学专业方向发展,要注意考察学校该专业的科研、教学力量。国内数学专业实力较强的大学有北京大学、清华大学、北京师范大学、复旦大学等。
应用数学专业可以考研的方向很广,经济类和计算机,软件都可以考虑。
经济类比较好考,因为经济类的数学考的是数学4(今年数学3和4合并了)
所以应用数学专业的数学水平足以应付考研难度,而经济专业课很多用了数学原理和逻辑性思维,学数学的人比较容易学
1.就业情况要和你的考的学校以及专业挂钩,应数跨专业能考的两个方面(经济类和计算机)其实就业情况差不多,就是高端少低端多,如果你的水平高是抢着要的。水平不行的话同样的竞争者多的很自然就业困难,如果下定决心考,就一定选一个好学校好导师,对就业帮助非常大。
2. 数学方面研究生就业的确和你所说一样就业范围很单一,但是现在情况不一样了,所谓精算师,建模师都很多是从数学专业走出来的研究生再学经济的,而不是经济 类的研究生,其实数学学的好很占便宜的。换专业很简单面也广。经济类的专业课不是很难。你不用没底,下功夫还是可以的。
3.对于考公务员来说,本科生是经济类占便宜,硕士生是数学和计算机的占便宜,你应该知道有个专业信息与计算科学,硕士生公务员招生对这个专业招收量很大的。其实也就是数学系的...不用担心找工作的问题。
总体来说,学什么应该看爱好,你不喜欢就学不好,学的不好,这几个专业的就业都不是很难但是也不会条件很好,考研难度必然是经济最大,但是经济的专业课真的不难,下功夫就行。不过你要是考个垃圾学校的还不如不考。。。
数学与应用数学专业属于基础专业,是其他相关专业的“母专业”。无论是进行科研数据分析、软件开发、三维动画制作还是从事金融保险,国际经济与贸易、工商管理、化工制药、通讯工程、建筑设计等,都离不开相关的数学专业知识。常言道:“学好数理化,走遍天下都不怕”。既然选择了它,就应全力以赴,让数学的思维,数学的精神在各领域实现全面的突破。
二、数学及应用数学专业就业前景分析
有关分析资料显示,在今后较长的时间内,尽管我国市场就业总态势呈现为竞争激烈的“需方市场”,但就业工作仍然是依学校类别及专业不同而需求各异。一方面是一些技术性专业比较走俏,另一方面是基础专业,如汉语、数学与应用数学专业人才相对紧缺。据国家教育部预测,今后5年内,我国高中教师缺口达到116万人,其中对数学、语文等基础学科的教师需求量最大。广东省许多市县甚至出现数学“教师荒”。全国37个大中城市人才市场的统计分析表明,数学教师十分抢手。据《教育文摘周报》披露,北京市将需求毕业生48890人,其中需求毕业人数最多的十大专业中,数学与应用数学专业需求量位居前列。陕西作为中国西部大开发的桥头堡,对数学专业人才的市场需求将会越来越旺。从上述资料分析不难看出,数学人才的需求量较大,就业前景看好。而且可以预见,随着经济和社会的发展,市场对数学与应用数学专业人才的需求将会越来越多,其就业前景比较广阔。
有关专家对IT行业230名成功人士抽样调查表明,以数学专业或相其关专业为依托实现职业再选择的人数占87%。由于数学与应用数学专业与其他相关专业联系紧密,以它为依托的相近专......>>

❻ 数学分析怎么学

如何学好数学1

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
如何学好数学2

高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。
有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。
至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。
l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。
3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。
4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。

答一送一:
如何在学习上占第一

学习上占第一,每个同学都可以做到。之所以你占不了第一,主要有两个原因:第一、生活方式、学习方法不正确,第二、没有坚强的毅力。在这里面毅力是第一重要的,学习方法是第二重要的。在现实生活中,全中国仍有70%以上的占第一的学生虽然占了第一,但他们并不是毅力最强的,或者说学习方法生活方式不是最好的。他们也许今天是第一,明天就不是了。也就是说,你如果按占第一的方法去学习、去锻炼,一般都会超过现有的第一。
辉煌的第一是不是要经过艰苦的努力才能得到呢?说它艰苦是因为“培养坚强的毅力”是世上最艰苦的工作,只有你具有了坚强的毅力才可能成为第一,当然正确的生活方式和学习方法也是特别重要的。在这里什么是坚强的毅力呢,只要你能按下面几点要求去做,而且每天都做记录,持之以恒,每天都不间断地坚持一个学期、一年、三年,那么你的毅力就足以达到占第一的要求了。在这项锻炼中就怕你中间有间断,风雨、心情、疾病、家务等等都不是你中断锻炼的理由。你要记住,学好学业是你学生生活中最重要的,没有什么工作的重要性会超过它。除了坚强的毅力,正确的学习方法和生活方式也是很重要的。
第一人人可以占,原来占第一的同学也不一定就比你更聪明多少,脑细胞也不一定比你多。爱迪生不是说过“天才是百分之九十九的汗水加上百分之一的灵感”吗?!所以你第一要过心理关,就是说:要坚信你一定能成功,一定会超过现有的第一,包括现在是第一的你自已。
第二、你要天天锻炼。没有一个健康的身体,你什么事也做不好,即使偶尔做好了,也不能长久。每天30分钟左右的锻炼一定要天天坚持。锻炼的形式多种多样,跑步、打乒乓球、打篮球、俯卧撑、立定跳远等等都可以。有些同学好面子,见到别人不跑步,怕自已跑别人看见了不好意思,那就错了,真正不好意思的是辛苦了几年考不上大学,是上了几年大学还要下岗。如果将来自已养活不了自已,那才是真正不好意思的。
第三、学习态度要端正。每次上课前,一定要把老师准备讲的内容预习好,把不好理解的、不会的内容做好标记,在老师讲到该处时认真听讲。如果老师讲了以后还不会,一定要再问老师,直到明白为止。当一个问题问了两遍三遍还不会时,一般的同学就不好意思问了,千万别这样,老师们最喜欢“不问明白誓不罢休”的性格了。上课时要认真听讲,认真思考,做好笔记。做笔记时一定要清楚,因为笔记的价值比课本还,将来的复习主要靠它。
课下首先要做的不是做作业,而是把笔记、课本上的知识点先学好,该记的内容一定把它背熟。这样会大大提高你做作业的速度,即平常说的“磨刀不误砍柴功”。做作业时应该独立思考,实在不能解决的问题,再和同学、老师商量。问同学时,不要问这道题结果是什么,而是要问“这道题究竟怎么做?”“这道题为什么这样做?”
第四、正确面对错误和失败。当有的知识你没有在课上学会、当你的练习做错时或者在考试中成绩太差时,你既不要报怨,也不要气馁,你应该正视这自已不愿得到的现实。没有学会不要紧,把该知识写到你的《备忘录》中,然后问同学问老师,再把正确的解释或结果,写到其它页上。错了题也是这样,考试失利不就是错的题多点吗,正确的方法是把原题抄到《备忘录》中,把正确的做法学会后,把做法和结果写到其它页上,如果能注上做该类题的注意事项,就会把你的学习效率又提高30%-60%。之所以把答案或解释写到其它页上,就是为了下次看知识点或错误的题目时,再动动脑筋,想想该知识点的理解和解释情况,再练练该题的做法和答案。错误和失败并不可怕,只要你能正视它,一切都会成为你成功的动力。
第五、记帐。你的学习一定要有一本帐,你什么时候做得好,记下来,什么时候错了题,记下来(注:帐本上只记“今天错题为《备忘录》××页×题)。课下几点几分学了英语,记录好;几点几分至几点几分学了物理记下来。把你生活中锻炼、学习的分分秒秒记录在你的帐本上,把你每次作业和考试中的正确题数、错误题数和错误题号(《备忘录》上的页号题号)一一记录在你的帐本上。把你每天学会的知识点都记录在帐本上,以备明天、后天再检查一下自已是否真正掌握了这些知识点。在帐本上过去了几天的知识点,你一定要学会并能熟练掌握。
帐本记录的是你学习、锻炼中每一个细节。这样记下来,在校生活中,每天约有一页32开纸的记录量,不在校时可能有两页32纸的记录量。在星期和假期里千万不能间断。把你的帐一天天积累起来,这就是你所走过的第一之路。
虽说在素质教育的今天学校不排名次,但学习出类拔萃是我们努力的目标,是我们考上高一级学校的必要条件,也是我们走向社会后,做好每一件工作的资本。同学们,去争取第一吧。如果你一年年按上面的要求做,你一定能占第一。
如果大家都这样去做,即使你占不了第一,一定是中国出类拔萃的学生,因为中国大多数的同学没有这样的毅力,没有这样好的学习方法和生活方式。同学们,为美好的明天奋斗吧!
===============================================
首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必 的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以 略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。

有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。

知识是能力的基础,要切实抓好基础知识的学习。数学基础知识学习包括概念学习,定理公式学习以及解题学习三个方面。学习数学概念,要善于抓住它的本质属性,也就是区别于这个概念和其他概念的属性;学习定理公式,要紧紧抓住定理方向的内在联系,抓住定理公式适用的范围及题型,做到得心应手地应用这些定理公式,数学解题实№上是在熟练掌握概念与定理公式的基础上解决矛盾,完成从“未知”向“已知”的转化。要着重学习各种转化方式,培养转化的能力。总而言之,在学习数学基础知识中,要注意把握知识的整体精髓, 悟其中的规律和实质,形成一个紧密联系的整体认识体系,以促进各种形式间的相互迁移和转化。同时,还要注意知识形成过程无处不隐含着人们在教学活动中解决问题的途径、手段和策略,无处不以数学思想、方法为指南,而这也是我们学习知识时最希望要学到的东西。

数学思想方法是知识、技能转化为能力的桥粱,是数学结构中强有力的支柱,在中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等,在学好数学知识的同时,要下大力气理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧。

在数学学习中,要特别重视运用数学知识解决实№问题能力的培养。数学社会化的趋势,使得“大众数学”的口号席卷整个世界,有人认为未来的工作岗位是为已作好数学准备的人才提供的,这里所说的“已作好了数学准备”并不仅指懂得了数学理论,更重要的是学会了数学思想,学会了将数学知识灵活运用于解决现实问题中。培养数学应用能力,首先要养成将实№问题数学化的习惯;其次,要掌握将实№问题数学化的一般方法,即建立数学模型的方法,同时,还要加强数学与其他学科的联系,除与传统学科如物理、化学联系外,可适当了解数学在经济学、管理学、工业等方面的应用。

如果我们在数学学习中,既扎扎实实地学好了数学知识和技能,又牢固地掌握了数学思想和方法,而且能灵活应用数学知识和技能解决实№问题,那么,我们就走在了一条数学学习成功的大道上。

❼ 数学分析,高等代数学了有什么用

我们的生活已经完全离不开数学。甚至可以这么说,没有高等数学的发展,就不会有今天的现代化。

高等数学的各主要学科的“用处”。中学数学就不说了,这在数学家眼里都是算术。一些如概率统计、离散数学、运筹学、控制论等纯粹就是为了应用而发展起来的分支也不说了,重点介绍基础方面的。

数学分析:主要包括微积分和级数理论。微积分是高等数学的基础,应用范围非常广,基本上涉及到函数的领域都需要微积分的知识。级数中,傅立叶级数和傅立叶变换主要应用在信号分析领域,包括滤波、数据压缩、电力系统的监控等,电子产品的制造离不开它。

实变函数(实分析):数学分析的加强版之一。主要应用于经济学等注重数据分析的领域。

复变函数(复分析):数学分析加强版之二。应用很广的一门学科,在航空力学、流体力学、固体力学、信息工程、电气工程等领域都有广泛的应用,所以工科学生都要学这门课的。

高等代数,主要包括线形代数和多项式理论。线形代数可以说是目前应用很广泛的数学分支,数据结构、程序算法、机械设计、电子电路、电子信号、自动控制、经济分析、管理科学、医学、会计等都需要用到线形代数的知识,是目前经管、理工、计算机专业学生的必修课程。

高等几何:包括空间解析几何、射影几何、球面几何等,主要应用在建筑设计、工程制图方面。

分析学、高等代数、高等几何是近代数学的三大支柱。

微分方程:包括常微分方程和偏微分方程,重要工具之一。流体力学、超导技术、量子力学、数理金融中的稳定性分析、材料科学、模式识别、信号(图像)处理 、工业控制、输配电、遥感测控、传染病分析、天气预报等领域都需要它。

泛函分析:主要研究无限维空间上的函数。因为比较抽象,在技术上的直接应用不多,一般应用于连续介质力学、量子物理、计算数学、无穷维商品空间、控制论、最优化理论等理论。

近世代数(抽象代数):主要研究各种公理化抽象代数系统的。技术上没有应用,物理上用得比较多,尤其是其中的群论。

拓扑学:研究集合在连续变换下的不变性。在自然科学中应用较多,如物理学的液晶结构缺陷的分类、化学的分子拓扑构形、生物学的DNA的环绕和拓扑异构酶等,此外在经济学中的博弈论也有很重要的应用。

泛函分析、近世代数、拓扑学是现代数学三大热门分支。

非欧几何:主要应用在物理上,最着名的是相对论。

阅读全文

与数学分析交给我们什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:698
乙酸乙酯化学式怎么算 浏览:1366
沈阳初中的数学是什么版本的 浏览:1311
华为手机家人共享如何查看地理位置 浏览:1006
一氧化碳还原氧化铝化学方程式怎么配平 浏览:842
数学c什么意思是什么意思是什么 浏览:1363
中考初中地理如何补 浏览:1255
360浏览器历史在哪里下载迅雷下载 浏览:666
数学奥数卡怎么办 浏览:1343
如何回答地理是什么 浏览:986
win7如何删除电脑文件浏览历史 浏览:1017
大学物理实验干什么用的到 浏览:1442
二年级上册数学框框怎么填 浏览:1654
西安瑞禧生物科技有限公司怎么样 浏览:809
武大的分析化学怎么样 浏览:1207
ige电化学发光偏高怎么办 浏览:1294
学而思初中英语和语文怎么样 浏览:1600
下列哪个水飞蓟素化学结构 浏览:1382
化学理学哪些专业好 浏览:1447
数学中的棱的意思是什么 浏览:1012