㈠ 2018贵州省中考数学试卷附答案解析
2018的贵州省中考已经确定时间,相信各位初三的同学都在认真备考,数学的备考过程离不开数学试卷。下面由我为大家提供关于2018贵州省中考数学试卷附答案解析,希望对大家有帮助!
2018贵州省中考数学试卷一、选择题
本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.大米包装袋上 的标识表示此袋大米重( )
A. B. C. D.
【考点】正数和负数.
【分析】利用相 反意义量的定义计算即可得到结果.
【解答】解:+0.1表示比标准10千克超出0.1千克;—0.1表示比标准10千克不足0.1千克。故此袋大米重
故选A.
2.国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( )
A. B. C. 4 D. 0
【考点】中心对称图形;轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答 】解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、不是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,不是中心对称图形,故此选项错误;
D、是轴对称图形,又是中心对称图形,故此选项正确.
故选:D.
3.下列式子正确的是( )
A. B.
C. D.
【考点】整式的加减.
【分析】根含没拆据整式的加减运算法则求解.
【解答】解:
C、利用加法的交换律,故此选项正确;
故选:C
4.如图,梯形 中, , ( )
A. B. C. D.
【考点】平行线的性质.
【分析】由两直线平行,同旁内角互补即可得出 结果.
【解答】解:∵AB∥CD,∠A=45°,
∴∠ADC=180°-∠A=135°;
故选:B.
【点评】本题考查了平行线的性质;熟记两直线平行,同旁内角互补是解决问题的关键.
5.已知 组四人的成绩分别为90、60、90、60, 组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )
A.平均数谈枣 B.中位数 C.众数 D.方差
【考点】方差;平 均数;中位数;众数.
【分析】根据 组和 组成绩,求出中位数,平均数,众数,方差差,即可做出判断.
【解答】解: 组:平均数=75,中位数=75,众数=60或90,方差=225
组:平均数=75,中位数=75,众数=70或80,方差=25
故选D.
6.不等式 的解集在数轴上表示正确的是( )
【考点】解一元一次不等式;在数轴上表示不等式的解集.
【分析】根据解不等式的方法可以求得不等式 的解集,从而可知哪个选项是正确的.
【解答】解:
故选C.
7.国产大飞机 用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是( )
A. B. C. D.5003
【考点】平均数
【分析】根据知识点:察敬一组数据同时加上或减去某个数a,平均数也相应加上或减去某个数a,进行简化计算。
【解答】解:数据5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,同时减去5000,得到新数据:98,99,1,2,-10,-80,80,10,-99,-98
新数据平均数:0.3
∴原数据平均数:5000.3
故选A.
8.使函数 有意义的自变量的取值范围是( )
A. B. C. D.
【考点】函数,二次根式
【分析】根据知识点:二次根式 ,被开方数 求解
【解答】
解:3-x≥0
x≤3
故选C.
9.已知二次函数 的图象如图所示,则( )
A. B. C. D.
【考点】二次函数的图象.
【分析】根据二次函数图象的开口方向、对称轴、与y轴的交点情况分析判断即可得解.
【解答】解:抛物线开口向下知a<0;与y轴正半轴相交,知c<0;对称轴,在y轴右边x=﹣ >0,b>0,B选项符合.
故选B.
【点评】本题考查了二次函数图象,熟练掌握函数图象与系数的关系是解题的关键.
10.矩形的两边长分别为、,下列数据能构成黄金矩形的是( )
A. B. C. D.
【考点】黄金分割.
【分析】黄金矩形的长宽之比为黄金分割比,即
【解答】解:选项D中a:b=
故选D.
11.桌面 上放置的几何体中,主视图与左视图可能不同的是( )
A.圆柱 B.正方体 C.球 D.直立圆锥
【考点】简单几何体的三视图.
【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.
【解答】解:B、正方体主视图与左视图可能不同;
故选:B.
【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.
12.三角形的两边 的夹角为 且满足方程 ,则第三边长的长是( )
A. B. C. D.
2018贵州省中考数学试卷二、填空题
(每题5分,满分40分,将答案填在答题纸上)
13.中国“蛟龙号”深潜器下潜深度为7062米,用科学计数法表示为 米.
【 考 点 】 科学记数法—表示较大的数.
【 分 析 】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【 解 答 】
解:7062=7.062×103,
【 点 评 】此题考查科学 记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
14.计算:2017×1983 .
【 考 点 】 平方差公式.
【 分 析 】对2017和1983变形再运用平方差公式.
【 解 答 】
解:2017×1983=
【 点 评 】灵活运用平方差公式简便计算.
15.定义: , , ,若 , ,则 .
【 考 点 】 新定义运算.
【 分 析 】新定义运算: 表示两个集合所有数的集合
【 解 答 】
解:
【 点 评 】根据题目给出的定义进行计算.
16.如图,在正方形 中,等边三角形 的顶点 、 分别在边 和 上,则 度.
【 考 点 】 正方形、等边三角形、全等三角形.
【 分 析 】证明△ABE≌△ADF,得∠BAE=15°, 75°
【 解 答 】
解:∵正方形
∴AD=AB,∠BAD=∠B=∠D=90°
∵等边三角形
∴AE=AF,∠EAF=60°
∴△ABE≌△ADF
∴∠BAE=∠DAF=15°
∴∠AEB=75°
【 点 评 】熟记正方形和等边三角形性质,全等三角形判定定理,并灵活运用.
17.方程 的解为 .
【考点】分式方程的解.
【分析】把分式方程转化成整式方程,求出整式方程的解,再代入x2﹣1进行检验即可.
【解答】解:两边都 乘以x2﹣1,得:2﹣(x+1)=x2﹣1,
整理化简
x2+x-2=0
解得:x1=﹣2,x2=1
检验:当x=﹣2时,x﹣3=﹣5≠0,当x=1时,x2﹣1=0,
故方程的解为x=﹣2,
故答案为:﹣2.
18.如图,在平行四边形 中,对角线 、 相交于点 ,在 的延长 线上取一点 ,连接 交 于点 ,若 , , ,则 .
【考点】平行四边形,相似三角形.
【分析】利用平行四边形性质,及两次全等求AF.
【解答】解:过点O作OG//AB,
∵平行四边形 中
∴AB=CD=5,BC=AD=8,BO=DO
∵OG//AB
∴△ODG∽ △BDA且相似比为1:2,△OFG∽△EFA
∴OG= AB=2.5,AG= AD=4
∴AF:FG=AE:OG=4:5
∴AF= AG=
19.已知 , ,若白棋 飞挂后,黑棋 尖顶,黑棋 的坐标为( , ).
【考点】平面直角坐标系.
【分析】根据 , 建立平面直角坐标系,再求黑棋 的坐标
【解答】
解:根据 , ,建立平面直角坐标系如图所示
∴C(-1,1)
20.计算 的前 项的和是 .
【考点】数列.
【分析】对原式进行变形,用数列公式计算.
【解答 】
解:
2018贵州省中考数学试卷三、解答题
(本大题共6小题,共62分.解答应写出文字说明、证明过程或演算步骤.)
21.计算:(1) ;
(2) .
【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.
【分析】本题涉及绝对值、二次根式化简、特殊角的三角函数值、负指数幂、零指数幂5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【解答】
解:
22.如图,在边长为1的正方形网格中, 的顶点均在格点上.
(1)画出 关于原点成中心对称的 ,并直接写出 各顶点的坐标.
(2)求点 旋转到点 的路径(结果保留 ).
【考点】坐标与图形变化-旋转(中心对称);弧线长计算公式.
【分析】(1)利用 中心对称画出图形并写出坐标;(2)利用弧线长计算公式计算点 旋转到点 的路径.
【解答】解:(1)图形如图所示,
23.端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.
(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性;
(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.
【考点】画树状图或列表求概率.
【分析】(1)画树状图或列表时注意:所有情况不可能是 ;(2)12种情况中,同一味道4种情况.
【解答】解:
24.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设米,乙队每天铺设 米.
(1)依题意列出二元一次方程组;
(2)求出甲乙两施工队每天各铺设多少米?
【考点】列二元一次方程组解应用题.
【分析】(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y(2)解方程组.
【解答】解:
25.如图, 是 的直径, ,点 在 上, , 为 的中点, 是直径 上一动点.
(1)利用尺规作图,确定当 最小时 点的位置(不写作法,但要保留作图痕迹).
(2)求 的最小值.
【考点】圆,最短路线问题.
【分析】(1)画出A点关于MN的称点 ,连接 B,就可以得到P点
(2)利用 得∠AON=∠ =60°,又 为弧AN的中点,∴∠BON=30°,所以∠ ON=90°,再求最小值 .
【解答】解:
26.已知函数 , ,k、b为整数且 .
(1)讨论b,k的取值.
(2)分别画出两种函数的所有图象.(不需列表)
(3)求 与 的交点个数.
【考点】一次函数,反比例函数,分类讨论思想,图形结合思想.
【分析】(1)∵ ,分四种情况讨论
(2)根据分类讨论k和b的值,分别画出图像.
(3)利用图像求出4个交点
【解答】解:
猜你喜欢:
1. 2018年语文中考题答案
2. 2017中考数学试卷真题含答案
3. 2018年中考语文一模试题及答案
4. 2018七年级历史月考检测试卷附答案贵州
5. 2018年中考生物试题及答案
㈡ 2018泰州中考数学试卷及答案解析
2018年初三的同学们,中考已经离你们不远了,数学试卷别放着不做,要对抓紧时间复习数学。下面由我为大家提供关于2018泰州中考数学试卷及答案解析,希望对大家有帮助!
2018泰州中考数学试卷一、选择题
本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.2的算术平方根是()
A. B. C. D.2
【答案】B.
派铅试题分析:一个数正的平方根叫这个数的算术平方根,根据算术平方根的定义可得2的算术平方根是 ,故选B.
考点:算术平方根.
2.下列运算正确的是()
A.a3•a3=2a6 B.a3+a3=2a6 C.(a3)2=a6 D.a6•a2=a3
【答案】C.
试题分析:选项A,a3•a3=a6;选项B,a3+a3=2a3;选项C,(a3)2=a6;选项D,a6•a2=a8.故选C.
考点:整式的运算.
3.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
【答案】C.
考点:中心对称图形;轴对称图形.
4.三角形的重心是()
A.三角形三条边上中线的交点
B.三角形三条边上高线的交点
C.三角形三条边垂直平分线的交点
D.三角形三条内角平行线的交点
【答案】A.
试题分析:三角形的重心是三条中线的交点,故选A.
考点:三角形的重心.
5.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()
A.平均数不变,方差不变 B.平均数不变,方差变大
C.平均数不变,方差变小尘卖好 D.平均数变小,方差不变
【答案】C.
试题分析: ,S2原= ; ,S2新= ,平均数不变,方差变小,故选C.学#科网
考点:平均数;方差.
6.如图,P为反比例函数y= (k>0)在第一象限内图象上的配慎一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()
A.2 B.4 C.6 D.8
【答案】D.
∴C(0,﹣4),G(﹣4,0),
∴OC=OG,
∴∠OGC=∠OCG=45°
∵PB∥OG,PA∥OC,
∵∠AOB=135°,
∴∠OBE+∠OAE=45°,
∵∠DAO+∠OAE=45°,
∴∠DAO=∠OBE,
∵在△BOE和△AOD中, ,
∴△BOE∽△AOD;
∴ ,即 ;
整理得:nk+2n2=8n+2n2,化简得:k=8;
故选D.
考点:反比例函数综合题.
2018泰州中考数学试卷二、填空题
(每题3分,满分30分,将答案填在答题纸上)
7. |﹣4|= .
【答案】4.
试题分析:正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.由此可得|﹣4|=4.
考点:绝对值.
8.天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为 .
【答案】4.25×104.
考点:科学记数法.
9.已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为 .
【答案】8.
试题分析:当2m﹣3n=﹣4时,原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8.
考点:整式的运算;整体思想. 学#科.网
10. 一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是 .(填“必然事件”、“不可能事件”或“随机事件”)
【答案】不可能事件.
试题分析:已知袋子中3个小球的标号分别为1、2、3,没有标号为4的球,即可知从中摸出1个小球,标号为“4”,这个事件是不可能事件.
考点:随机事件.
11.将一副三角板如图叠放,则图中∠α的度数为 .
【答案】15°.
试题分析:由三角形的外角的性质可知,∠α=60°﹣45°=15°.
考点:三角形的外角的性质.
12.扇形的半径为3cm,弧长为2πcm,则该扇形的面积为 cm2.
【答案】3π.
试题分析:设扇形的圆心角为n,则:2π= ,解得:n=120°.所以S扇形= =3πcm2.
考点:扇形面积的计算.
13.方程2x2+3x﹣1=0的两个根为x1、x2,则 的值等于 .
【答案】3.
试题分析:根据根与系数的关系得到x1+x2=﹣ ,x1x2=﹣ , 所以 = =3.
考点:根与系数的关系.
14.小明沿着坡度i为1: 的直路向上走了50m,则小明沿垂直方向升高了 m.
【答案】25.
考点:解直角三角形的应用.
15.如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为 .
【答案】(7,4)或(6,5)或(1,4).
考点:三角形的外接圆;坐标与图形性质;勾股定理.
16.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为 .
【答案】6
试题分析:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,
在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′= =6 .21世纪教育网
考点:轨迹;平移变换;勾股定理.
2018泰州中考数学试卷三、解答题
(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)
17.(1)计算:( ﹣1)0﹣(﹣ )﹣2+ tan30°;
(2)解方程: .
【答案】(1)-2;(2)分式方程无解.
考点:实数的运算;解分式方程.
18. “泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:
根据以上信息完成下列问题:
(1)补全条形统计图;
(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.
【答案】(1)详见解析;(2)960.
(2)该校全体学生中每周学习数学泰微课在16至30个之间的有1200× =960人.
考点:条形统计图;用样本估计总体.21世纪教育网
19.在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.
【答案】 .
考点:用列表法或画树状图法求概率.
20.(8分)如图,△ABC中,∠ACB>∠ABC.
(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);
(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.
【答案】(1)详见解析;(2)4.
试题分析:(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.
试题解析:
(1)如图所示,射线CM即为所求;
(2)∵∠ACD=∠ABC,∠CAD=∠BAC,
∴△ACD∽△ABC,
∴ ,即 ,
∴AD=4. 学@科网
考点:基本作图;相似三角形的判定与性质.
21.平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).
(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;
(2)如图,一次函数y=﹣ x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.
【答案】(1)点P在一次函数y=x﹣2的图象上,理由见解析;(2)1
考点:一次函数图象上点的坐标特征;一次函数的性质.
22.如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.
(1)求证:△ABE≌△DAF;
(2)若AF=1,四边形ABED的面积为6,求EF的长.
【答案】(1)详见解析;(2)2.
由题意2× ×(x+1)×1+ ×x×(x+1)=6,
解得x=2或﹣5(舍弃),
∴EF=2.
考点:正方形的性质;全等三角形的判定和性质;勾股定理.
23.怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?
【答案】(1) 该店每天卖出这两种菜品共60份;(2) 这两种菜品每天的总利润最多是316元.
试题分析:(1)由A种菜和B种菜每天的营业额为1120和总利润为280建立方程组即可;(2)设出A种菜多卖出a份,则B种菜少卖出a份,最后建立利润与A种菜少卖出的份数的函数关系式即可得出结论.
试题解析:
=(6﹣0.5a)(20+a)+(4+0.5a)(40﹣a)
=(﹣0.5a2﹣4a+120)+(﹣0.5a2+16a+160)
=﹣a2+12a+280
=﹣(a﹣6)2+316
当a=6,w最大,w=316
答:这两种菜品每天的总利润最多是316元.
考点:二元一次方程组和二次函数的应用.
24.如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.
(1)求证:点P为 的中点;
(2)若∠C=∠D,求四边形BCPD的面积.
【答案】(1)详见解析;(2)18 .
试题分析:(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理
∵∠POB=2∠D,
∴∠POB=2∠C,
∵∠CPO=90°,
∴∠C=30°,
∵BD∥CP,
∴∠C=∠DBA,
∴∠D=∠DBA,
∴BC∥PD,
∴四边形BCPD是平行四边形,
∴四边形BCPD的面积=PC•PE=6 ×3=18 .学科%网
考点:切线的性质;垂径定理;平行四边形的判定和性质.
25.阅读理解:
如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.
例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.
解决问题:
如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.
(1)当t=4时,求点P到线段AB的距离;
(2)t为何值时,点P到线段AB的距离为5?
(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)
【答案】(1) 4 ;(2) t=5或t=11;(3)当8﹣2 ≤t≤ 时,点P到线段AB的距离不超过6.
试题分析:(1)作AC⊥x轴,由PC=4、AC=4,根据勾股定理求解可得;(2)作BD∥x轴,分点P在AC
则AC=4、OC=8,
当t=4时,OP=4,
∴PC=4,
∴点P到线段AB的距离PA= = =4 ;
(2)如图2,过点B作BD∥x轴,交y轴于点E,
①当点P位于AC左侧时,∵AC=4、P1A=5,
∴P1C= =3,
∴OP1=5,即t=5;
②当点P位于AC右侧时,过点A作AP2⊥AB,交x轴于点P2,
∴∠CAP2+∠EAB=90°,
∵BD∥x轴、AC⊥x轴,
∴CE⊥BD,
(3)如图3,
①当点P位于AC左侧,且AP3=6时,
则P3C= =2 ,
∴OP3=OC﹣P3C=8﹣2 ;
②当点P位于AC右侧,且P3M=6时,
过点P2作P2N⊥P3M于点N,
考点:一次函数的综合题.
26.平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).
(1)若一次函数y1=kx+b的图象经过A、B两点.
①当a=1、d=﹣1时,求k的值;
②若y1随x的增大而减小,求d的取值范围;
(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;
(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.
【答案】(1)①-3;②d>﹣4;(2)AB∥x轴,理由见解析;(3)线段CD的长随m的值的变化而变化.
当8﹣2m=0时,m=4时,CD=|8﹣2m|=0,即点C与点D重合;当m>4时,CD=2m﹣8;当m<4时,CD=8﹣2m.
试题分析:(1)①当a=1、d=﹣1时,m=2a﹣d=3,于是得到抛物线的解析式,然后求得点A和点B的坐标,最后将点A和点B的坐标代入直线AB的解析式求得k的值即可;②将x=a,x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,然后依据y1随着x的增大而减小,可得到﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),结合已知条件2a﹣m=d,可求得d的取值范围;(2)由d=﹣4可得到m=2a+4,则抛物线的解析式为y=﹣x2+(2a+2)x+4a+8,然后将x=a、x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,最后依据点A和点B的纵坐标可判断出AB与x轴的位置关系;(3)先求得点A和点B的坐标,于是得到点A和点B运动的路线与字母a的函数关系式,则点C(0,2m),D(0,4m﹣8),于是可得到CD与m的关系式.
试题解析:
(1)①当a=1、d=﹣1时,m=2a﹣d=3,
所以二次函数的表达式是y=﹣x2+x+6.
∵a=1,
∴点A的横坐标为1,点B的横坐标为3,
把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,
∴A(1,6),B(3,0).
将点A和点B的坐标代入直线的解析式得: ,解得: ,
所以k的值为﹣3.
把x=a+2代入抛物线的解析式得:y=a2+6a+8.
∴A(a,a2+6a+8)、B(a+2,a2+6a+8).
∵点A、点B的纵坐标相同,
∴AB∥x轴.
(3)线段CD的长随m的值的变化而变化.
∵y=﹣x2+(m﹣2)x+2m过点A、点B,
∴当x=a时,y=﹣a2+(m﹣2)a+2m,当x=a+2时,y=﹣(a+2)2+(m﹣2)(a+2)+2m,
∴A(a,﹣a2+(m﹣2)a+2m)、B(a+2,﹣(a+2)2+(m﹣2)(a+2)+2m).
∴点A运动的路线是的函数关系式为y1=﹣a2+(m﹣2)a+2m,点B运动的路线的函数关系式为y2=﹣(a+2)
考点:二次函数综合题.
猜你喜欢:
1. 2017年中考数学试卷含答案
2. 2017中考数学试卷真题含答案
3. 中考数学规律题及答案解析
4. 中考数学仿真模拟试题附答案
5. 江苏省泰州市中考语文试卷及答案