⑴ 高考数学选择题多少分 高考数学分值分布
你想知道高考数学试卷选择一共占多少分吗?你是否明白高考数学的分值分布情况?下面我就为大家详细介绍下,具体内容如下。
在高考雀碰凳数学的试卷中,选择题一共8小题,每小题5分一共40分。填空一共5个,每题6分,一共30分。选择填空总共70分。具体是这样在高考数学试卷上分布的:
一、选择题 1~8 每小题5分 共40分
二、填空题9~14 每小题6分 共30分
三、解答题
15.三角函数或者解三角形 13分
16.概率题 13分
17.立体几何14分 (16 17位置可能互换)
18.导数题 13分
19.解析几何体 椭圆 双曲线 抛物线 之类的 14分
20.定义新运算 推理与证明 13分
共计150分
1.集合与简易逻辑。分值在5~10分左右(一道或两道选择题),高考数学考查的重点是抽象思维能力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展。简易逻辑多为考查“充分与必要条件”及命题真伪的判别。
2.函数与导数,函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。在高考数学中,至少三个小题一个大题,分值在30分左右。以指数函数、对数函数、生成性函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数问题常常是选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。函数与导数的结合是高考的热点题型,文科以三次(或四吵颂次)函数为命题载体,理科以生成性函数(对数函数、指数函数及分式函数)为命题载体,以切线问题、极值最值问题、单调性问题、恒成立问题为设置条件,与不等式、数列综合成题,是解答题试题的主要特点。
3.不等式; 高考数学一般不会单独命题,会在其他题型中“隐蔽”出现,分值一般在10左右。不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。选择题和填空题主要考查不等式性质、解法及均值不等式。解答题会与其它知识的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n 项和的有界性证明、由函数的导数确定最值型的不等式证明等。
4.数列:数列是高中数学的重要内容,又是初等数学与高等数学的重要衔接点,所以在历年的高考数学解答题中都占有重要的地位.题量一般是一个小题一个大题,有时还有一个与其它知识的综合题。分值在20分左右,文科以应用等差、等比数列的概念、性质求通项公式、前n 项和为主;理科以应用Sn 或an 之间的递推关系求通项、求和、证明有关性质为主。数列是特殊的函数,而不等式是深顷旅刻认识函数与数列的工具,三者综合的求解题与求证题是对基础知识和基础能力的双重检验,是高考命题的新热点。
5.三角函数:分值在20分左右(两小一大)。三角函数高考数学题大致为以下几类:一是三角函数的恒等变形,即应用同角变换和诱导公式,两角和差公式,二倍角公式,求三角函数值及化简、证明等问题;二是三角函数的图象和性质,即图像的平移、伸缩变换与对称变换、画图与视图,与单调性、周期性和对称性、最值有关的问题;三是三角形中的三角问题.
高考数学对这部分内容的命题有如下趋势:⑴降低了对三角变形的要求,加强了对三角函数的图象和性质的考察.⑵多是基础题,难度属中档偏易.⑶强调三角函数的工具性,加强了三角函数与其他知识的综合,如与向量知识、三角形问题、解析几何、立体几何的综合。以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点。
6.向量:分值在10分左右,一般有一道小题的纯向量题,另外在函数、三角、解析几何与立体几何中均可能结合出题。向量是高考数学新增的重点内容,它融代数特征和几何特征于一体。
⑵ 高考数学必修和选修各占多少分
数学,15分选修(5分选择题,10分的大题)
理综,选修一共45分,每个15分
英语和语文。好像没有吧,记不清了。这只是我们16年高考的制度,希望能帮到你。
⑶ 高中数学选修部分占高考多少分
高考数衡旁戚学各章节占比情况
1. *** (必修1)与简易逻辑,复数(选修)。
分值在10分左右(一两道选择题,有时达到三道),考查的重点是计算能力, *** 多考察交并补运算,简易逻辑多为考查“充分与必要条件”及命题真伪的判别,复数一般考察模及分式运算。
2.函数(必修1指数函数、对数函数)与导数(选修),一般在高考中,至少三个小题一个大压轴题,分值在30分左右。
以指数函数、对数函数、及扩展函数函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)以选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。
压轴题,文科以三次函数为主,理科以含有ex,lnx的复杂函数为主,以切线问题、极值最值问题、单调性问题、恒成立零点为设置条件,求解范围或证明结论为主。
3立体几何(必修2):分值在22分左右(两小一大),两小题以基本位置关系的判定与体积,内外截球,三视图计算为主,一大题以证明空间线面的位置关系和夹角计算为主,试题的命制载体可能趋向于不规则几何体,但仍以“方便建系”为原则。
4.解析几何(必修2+选修):必修2直线与圆的方程、选修圆锥曲线统称为解析几何,高考对解析几何的考查一般是三个小题一个大题,所占分值约30分。
其规律启宽是线性规划、直线与圆各咐陵一个小题,涉及圆锥曲线的图形、定义或简单几何性质的问题一个小题,直线与圆锥曲线的综合问题一个大题。
圆锥曲线核心:运算,超越课本结论。
5.算法程序框图(必修3):一道选择题,主要以循环结构为主。
6.概率统计(必修3),排列、组合、二项式定理、(选修):分值在22分左右(两小一大),排列组合与二项式定理一般一个小题,大题理科以概率统计、文科以求概率的应用题为主理科考查重点为随机变量的分布列及数学期望,概率计算;文科以等可能事件、互斥事件、相互独立事件的概率求法为主。
特别要引起注意是以“正态分布”相关内容为题材,文科卷以“抽样”相关内容为题材设计试题。
7三角函数(必修4):分值在20分左右(两小一大,大题或有或无)。
三角函数考题大致为以下几类:一是三角函数的恒等变形,即应用同角变换和诱导公式,两角和差公式,二倍角公式,求三角函数值及化简、证明等问题;二是三角函数的图象和性质,即图像的平移、伸缩变换与对称变换、画图与视图,与单调性、周期性和对称性、最值有关的问题;三是三角形中的三角问题.
高考对这部分内容的命题有如下趋势:⑴降低了对三角变形的要求,加强了对三角函数的图象和性质的考察.⑵多是基础题,难度属中档偏易.⑶强调三角函数的工具性,加强了三角函数与其他知识的综合,如与向量知识、三角形问题、解析几何、立体几何的综合。
以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点。
8向量(必修4):分值在10分左右,一般有一道小题的纯向量题,另外在函数、三角、解析几何与立体几何中均可能结合出题。
9不等式(必修5);选择题多以基本不等式求最值为主,在解答题中中“隐蔽”出现,分值一般在10左右。
不等式涉及函数、数列、圆锥曲线等知识的考查。
10.数列(必修5):数列是高中数学的重要内容,题量一般是一个小题,一个大题或有或无(改成小题),有时还有一个与其它知识的综合题。
分值在15分左右,文科以应用等差、等比数列的概念、性质求通项公式、前n项和为主;理科以应用Sn或an之间的递推关系求通项、求和、证明有关性质为主。
11选做题一道(选修)
⑷ 高中数学每道大题的分值如何分配
高考数学以全国卷为例,题型分为选择题12题(每题5分,共60分),填空题4题(每题5分,共20分),解答题5题(每题12分,共60分),选考题1题(10分)。
其中选择题和填空题中:
集合类1题;复数类1题;程序框图1题;统计学1题;三视图1题;(该五类题基本固定出现)。
根据高中各个模块分析,每年高考题目分布情况:
三角函数:选择填空共2题或者解答题1题;
数列:选择填空共2题或者解答题1题;
立体几何:选择填空类三视图,球类各1题,解答题1题;
统计学:选在填空类1题,解答题1题;
解析几何:选择填空1至2题,解答题1题;
导函数:选择填空1题,解答题1题;
参数方程(选考):选考1题;<推荐选择>
不等式方程(选考):选考1题;