① 做初二数学证明题有什么技巧
1、综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决。
2、分析法(执果索因),从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止。
3、分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
(1)数学求证题不会怎么办扩展阅读:
几何证明作为平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
② 孩子数学几何证明题不会怎么办
数学不好的孩子,怎么办:
①首先培养孩子数学兴趣,用孩子喜欢的方式切入,孩子只有对感兴趣的东西才更认真;
②基础知识牢牢掌握,扎实的基础是最重要的;
③知识点整理,制定学习计划;
④针对性训练,及时复习,查漏补缺。
③ 数学证明题怎样巧解
1)按照题意画出图形;
(2)分清命题的条件的结论,结合徒刑,在“已知”一项中写出题设,在“求证”一项中写出结论;
(3)在“证明”一项中,写出全部推理过程。
1、综合法:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立。
2、分析法:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止。
3、反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立。
④ 初中数学的几何证明题完全不懂摸不着门路,该如何解决这个问题
初中数学的几何证明题,许多人会觉得自己没有做题思路,不知道该怎么入手,无法找到突破口。
⑤ 解数学证明题的技巧有哪些
做数学证明题技巧如下:x0dx0a(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。x0dx0a(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思弊族唤维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去„„这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。x0dx0a(3)正逆结合。租凯对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等穗并等。正逆结合,战无不胜。x0dx0a(4)“读”——读题x0dx0a如何读题?仁者见仁、智者见智,我们课题组结合我们的研究和本校学生的实际,将读题分为三步:第一步,粗读(类似语文阅读的浏览)。快速地将题目从头到尾浏览一遍,大致了解题目的意思和要求;第二步,细读。在大致了解题目的意思和要求的情况下,再认真地有针对性地读题,弄清题目的题设和结论,搞清已知是什么、需要证明的是什么?并尽可能地将已知条件在图形中用符号简明扼要地表示出来(如哪两个角相等,哪两条线段相等,垂直关系,等等),若题中给出的条件不明显的(即有隐含条件的),还要指导学生如何去挖掘它们、发现它们;第三步,记忆复述。在前面粗读和细读的基础上,先将已知条件和要证明的结论在心里默记一遍,再结合图形中自己所标的符号将原题的意思复述出来。到此读题这一环节,才算完成。x0dx0a对于读题这一环节,我们之所以要求这么复杂,是因为在实际证题的过程中,学生找不到证明的思路或方法,很多时候就是由于漏掉了题中某些已知条件或将题中某些已知条件记错或想当然地添上一些已知条件,而将已知记在心里并能复述出来就可以很好地避免这些情况的发生。x0dx0a(5)“析”——分析x0dx0a用数学方法中的“分析法”,执果索因,一步一步探究证明的思路和方法。教师用启发性的语言或提问指导学生,学生在教师的指导下经过一系列的质疑、判断、比较、选择,以及相应的分析、综合、概括等认识活动,思考、探究,小组内讨论、交流、发现解决问题的思路和方法。x0dx0a(6)“择”——选择最简易的方法x0dx0a选择最简单的一种证题方法,这样做,不仅能进一步理清证明思路、记忆相关的几何定理、性质,而且还增加了学习的兴趣和好奇心,从而激发学习的积极性和主动性。x0dx0a(7)“练”——变式练习x0dx0a变式,既是一种重要的思想方法,又是一种行之有效的方法。通过变式训练,展现知识发生、发展、形成的完整认知过程。变式教学符合学生是认知规律,能有层次地推进,为学生提供一个求异、思变的空间,让学生把学到的概念、公式、定理、法则灵活应用道各种情景中去,培养学生灵活多变的思维品质,提高学生研究、探索问题的能力,提高数学素养,从而有效地提高数学教学效果。
⑥ 数学证明题不会怎么办 有哪些技巧
对于很多学生来说,证明题是很难的部分,我整理了一些做证明题的方法。
解决证明题时,选择向量或者辅助线的方式是一个不错的选择,防止使用普通解题方法导致解题过程繁杂,进而出现错误。加强证明题的灵活性,重点关注题目的变形以及与其他题型的综合,研究典型的证明题题型,多思考。
俗话说:“兴趣是最好的老师.”因此,提高高中生对数学的学习兴趣可以说是提高数学证明题解题能力的重要方法。因此,在高中数学学习的过程中应该找到学习数学的乐趣,并且充分调动解证明题积极性,并培养独立思考的能力,进而培养其解决数学证明题的能力。
顾名思义,就是从相反的方向思考问题。运用逆向思维解题,从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。
这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。
如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。
例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去。
以上是我整理的做证明题的方法,希望能帮到你。
⑦ 数学的证明提不会做怎么办
多看书本中的定理、基本概念,有时候是通过定义来证明的,举一反三,把定义理解透彻。学会一步步分解,挖出隐含条件,拆开去理解问题。对于不理解的知识点可以去问老师或同学,不要放那里自己去钻牛角尖。