导航:首页 > 数字科学 > 数学归纳法体现了什么数学思想

数学归纳法体现了什么数学思想

发布时间:2023-08-31 16:16:11

‘壹’ 数学归纳法是什么

数学归纳法就是一种证明方式。

通过过归纳,可以使杂乱无章的数学条理化,使大量的数学系统化。归纳是在比较的基础上进行的。通过比较,找出数学间的相同点和差异点,然后把具有相同点的数学归为同一类,把具有差异点的数学分成不同的类。最终达到数学上的证明。

(1)数学归纳法体现了什么数学思想扩展阅读:

数学归纳法原理可以由下面的良序性质(最小自然数原理)公理可以推出:

自然数集是良序的。(每个非空的正整数集合都有一个最小的元素);比如{1, 2, 3 , 4, 5}这个正整数集合中有最小的数——1。

下面我们将通过这个性质来证明数学归纳法:

对于一个已经完成上述两步证明的数学命题,我们假设它并不是对于所有的正整数都成立。

对于那备型些不成立的数所构成的集合S,其中必定有一个最小的元素k。(1是不属于集合S,所以k>1)

k已经是集合S中的最小元素了,所以k-1是不属于S,这意味着k-1对于命题而言是成立的——既然对于k-1成立,那么也对手仔k也应该成立,这与毕滚汪我们完成的第二步骤矛盾。所以这个完成两个步骤的命题能够对所有n都成立。

‘贰’ 西师版小学数学教材蕴含的数学思想方法梳理

(1)符号思想
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。符号思想是将所有的数据实例集为一体,把复杂的语言文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用。把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象符号化的过程。用符号来体现的数学语言是世界性语言,是一个人数学素养的综合反映。
⑵ 化归思想
化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求解,化归为乙问题的求解,然后通过乙问题的解反向去获得甲问题的解。一般是指不可逆向的“变换”。它的基本形式有:化难为易,化生为熟,化繁为简,化整为零,化曲为直等。如求组合图形的面积时先把组合图形割补成学过的简单图形,然后计算出各部分面积的和或差,均能使学生体会化归法的本质。
⑶ 分解思想
分解思想就是先把原问题分解为若干便于解决的子问题,分解出若干便于求解的范围,分解出若干便于层层推进的解题步骤,然后逐个加以解决并达到最后顺利解决原问题的目的的一种思想方法。如在五年级《解决问题的策略》教学中“倒退着想”的解题策略就体现了这种思想。
⑷ 转换思想
转换思想是一种解决数学问题的重要策略,是由一种形式变换成另一种形式的思想方法,这里的变换是可逆的双向变换。在解决数学问题时,转换是一种非常有用的策略。 对问题进行转换时,既可转换已知条件,也可转换问题的结论;转换可以是等价的,也可以是不等价的,用转换思想来解决数学问题,转换仅是第一步,第二步要对转换后的问题进行求解,第三步要将转换后问题的解答反演成问题的解答。如果采用等价关系作转换,可直接求出解而省略反演这一步。
⑸ 分类思想
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按因数的个数分素数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理的分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构
⑹ 归纳思想
数学归纳法是一种数学证明方法,典型地用于确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。有一种用于数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式,这就是着名的结构归纳法
⑺ 类比思想
数学上的类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想,它能够解决一些表面上看似复杂困难的问题。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟得自然和简洁,从而可以激发起学生的创造力。
⑻ 假设思想
假设思想是一种常用的推测性的数学思考方法利用这种思想可以解一些填空题、判断题和应用题。有些题目数量关系比较隐蔽,难以建立数量之间的联系,或数量关系抽象,无从下手。可先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使得要解决的问题更形象、具体,从而丰富解题思路。
⑼ 比较思想
人类对一切事物的认识,都是建筑在比较的基础上,或同中辨异,或异中求同。俄国教育家乌申斯基说过:“比较是一切理解和一切思维的基础。”小学生学习数学知识,也同样需要通过对数学材料的比较,理解新知的本质意义,掌握知识间的联系和区别。
在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题的途径。
⑽ 极限思想
事物是从量变到质变,极限方法的实质正是通过量变的无限过程达到质变。现行小学教材中有许多处注意了极限思想的渗透。
⑾ 演绎思想
演绎也是理智的活动,但是和直观不同,它们不是理智的单纯活动,必须先假定了某些真理(或定义)之后,然后再凭借这些定义推出一些结论。
⑿ 模型思想
是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。
培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
⒀ 对应思想
对应指的是一个系统中的某一项在性质、作用、位置上跟另一系统中的某一项相当。对应思想可理解为两个集合元素之间的联系的一种思想方法。在小学数学教学中渗透对应思想,有助于提高学生分析问题和解决问题的能力。
⒁ 集合思想
把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素。通俗地说就是:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。
⒂ 数形结合思想
就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义又揭示其几何意义,使问题的数量关系和空间形式巧妙、和谐地结合起来,通过数与形的相互转化来解决数学问题的思想。
⒃ 统计思想
在小学数学中增加统计与概率课程的意义在于形成合理解读数据的能力、提高科学认识客观世界的能力、发展在现实情境中解决实际问题的能力。
⒄ 系统思想
系统思想是由若干想到关联、想到作用的要素(或成分)构成具有特定功能的有机整体。系统思想的方法便是要求人们从系统要素相互关系的观点,从系统与要素之间、要素与要素之间,以及系统与外部环境之间的相互关联和相互作用中考察对象,以得出研究和解决问题的最佳方案。

‘叁’ 常见的数学思想方法

在数学的学习过程中,有哪些常见的思想方法呢?下面是我网络整理的常见的数学思想方法以供大家学习。

常见的数学思想方法:分类与整合

解题时,我们常常遇到这样一种情况,解到某一步之后,不能再以统一方法,统一的式子继续进行了,因为这时被研究的问题包含了多种情况,这就必须在条件所给出的总区域内,正确划分若干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,还必须把它们总合在一起,因为我们研究的毕竟是这个问题的全体,这就是分类与整合的思想。有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。

高考将分类与整合的思想放在比较重要的位置,并以解答题为主进行考查,考查时要求考生理解什么样的问题需要分类研究,为什么要分类,如何分类以及分类后如何研究与最后如何整合。特别注意引起分类的原因,我们必须相当熟悉,有些概念就是分类定义的,如绝对值的概念、整数分为奇数偶数等,有些运算法则和公式是分类给出的,例如等比数列的求和公式就分为q=1和q≠1两种情况,对数函数的单调性就分为a>1,0

高考对分类与整合的思想的考查往往集中在含有参数的解析式,包括函数问题,数列问题和解析几何问题等。此外,排列组合的问题,概率统计的问题也考查分类与整合的思想。随着新课程高考在全国的实施,在新增内容中考查分类与整合的思想,窃以为,是今后几年高考命题的重点之一。

常见的数学思想方法:函数与方程

着名数学家克莱因说“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考”。一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题。

函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。

所谓方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。

函数和方程、不等式是通过函数值等于零、大于零或小于零而相互关联的,它们之间既有区别又有联系。函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。

高考把函数与方程的思想作为七种思想方法的重点来考查,使用选择题和填空题考查函数与方程的思想的基本运用,而在解答题中,则从更深的层次,在知识网络的交汇处,从思想方法与相关能力的关系角度进行综合考查。

在解题时,要学会思考这些问题:(1)是不是需要把字母看作变量?(2)是不是需要把代数式看作函数?如果是函数它具有哪些性质?(3)是不是需要构造一个函数把表面上不是函数的问题化归为函数问题?(4)能否把一个等式转化为一个方程?对这个方程的根有什么要求?……

常见的数学思想方法:特殊与一般

由特殊到一般,由一般到特殊,是人们认识世界的基本方法之一。数学研究也不例外,由特殊到一般,由一般到特殊的研究数学问题的基本认识过程,就是数学研究中的特殊与一般的思想。

我们对公式、定理、法则的学习往往都是从特殊开始,通过总结归纳得出来的,证明后,又使用它们来解决相关的数学问题。在数学中经常使用的归纳法,演绎法就是特殊与一般的思想的集中体现。分析历年的高考试题,考查特殊与一般的思想的题比比皆是,有的考查利用一般归纳法进行猜想,有的通过构造特殊函数、特殊数列,寻找特殊点,确定特殊位置,利用特殊值、特殊方程等,研究解决一般问题、抽象问题、运动变化的问题等。随着新教材的全面推广,高考以新增内容为素材,突出考查特殊与一般的思想必然成为今后命题改革的方向。

常见的数学思想方法:有限与无限

有限与无限并不是一新东西,虽然我们开始学习的数学都是有限的教学,但其中也包含有无限的成分,只不过没有进行深入的研究。在学习有关数及其运算的过程中,对自然数、整数、有理数、实数、复数的学习都是有限个数的运算,但实际上各数集内元素的个数都是无限的。在解析几何中,还学习过抛物线的渐近线,已经开始有极限的思想体现在其中。数列的极限和函数的极限集中体现了有限与无限的思想。使用极限的思想解决数学问题,比较明显的是立体几何中求球的体积和表面积,采用无限分割的方法来解决,实际上是先进行有限次分割,然后再求和求极限,这是典型的有限与无限的思想的应用。

函数是对运动变化的动态事物的描述,体现了变量数学在研究客观事物中的重要作用。导数是对事物变化快慢的一种描述,并由此可进一步处理和解决函数的增减、极大、极小、最大、最小等实际问题,是研究客观事物变化率和最优化问题的有力工具。

高考中对有限与无限的思想的考查才刚刚起步并且往往是在考查其他数学思想和方法的过程中同时考查有限与无限思想。例如,在使用由特殊到一般的归纳思维时,含有有限与无限的思想;在使用数学归纳法证明时,解决的是无限的问题,体现的是有限与无限的思想,等等。随着对新增内容的考查的逐步深入,必将加强对有限与无限的思想的考查,设计出突出体现出有限与无限的思想的新颖试题。

常见的数学思想方法:或然与必然

随机现象有两个最基本的特征,一是结果的随机性,即重复同样的试验,所得到的结果并不相同,以至于在试验之前不能预料试验的结果;二是频率的稳定性,即在大量重复试验中,每个试验结果发生的频率“稳定”在一个常数附近。了解一个随机现象就要知道这个随机现象中所有可能出现的结果,知道每个结果出现的概率,知道这两点就说对这个随机现象研究清楚了。概率研究的是随机现象,研究的过程是在“偶然”中寻找“必然”,然后再用“必然”的规律去解决“偶然”的问题,这其中所体现的数学思想就是或然与必然的思想。

随着新教材的推广,高考中对概率内容的考查已放在了重要的位置。通过对等可能性事件的概率,互斥事件有一个发生的概率、相互独立事件同时发生的概率、n次独立重复试验恰相好有k次发生的概率、随机事件的分布列与数学期望等重点内容的考查,考查基本概念和基本方法,考查在解决实际应用问题中或然与必然的辩证关系。

概率问题,无论属于哪一种类型,所研究的都是随机事件中“或然”与“必然”的辩证关系,在“或然”中寻找“必然”的规律。

常见的数学思想方法:化归与转化

将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题的思想叫做化归与转化的思想。化归与转化思想的实质是揭示联系,实现转化。

除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。从这个意义上讲,解决数学问题就是从未知向已知转化的过程。化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。数学中的转化比比皆是,如未知向已知转达化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,函数与方程的转化等,都是转化思想的体现。(转化与化归的思想方法是数学中最基本的思想方法。数学中的一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。各种变换方法、分析法、反证法、待定系数法、构造法等都是转化的手段。所以说,转化与化归是数学思想方法的灵魂。)

转化有等价转化和非等价转化。等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。

熟练、扎实地掌握基础知识、基本技能和基本方法是骒转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。有人认为“抓基础,重转化”是学好中学数学的金钥匙,说的也不无道理。

常见的数学思想方法:数形结合

数学研究的对象是数量关系和空间形式,即“数”与“形”两个方面。“数”与“形”两者之间并不是孤立的,而是有着密切的联系。数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中“数”与“形”相互转化的研究策略,即是数形结合的思想。

数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途径。它的运用,往往展现出“柳暗花明又一村”般的数形和谐完美结合的境地。华罗庚先生曾作过精辟的论述:“数与开形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难人微,数形结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系切莫离。”

数形结合既是一个重要的数学思想,也是一种常用的解题策略。一方面,许多数量关系的抽象概念和解析式,若赋予几何意义,往往变得非常直观形象;另一方面,一些图形的属性又可通过数量关系的研究,使得图形的性质更丰富、更精准、更深刻。这种“数”与“形”的相互转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可大大开拓我们的解题思路。可以这样说,数形结合不仅是探求思路的“慧眼”,而且是深化思维的有力“杠杆”。

由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识。因此,数形结合的思想的使用往往偏重于由“数”到“形”的转化。

在高考中,选择题和填空题这两种题型的特点(只需写出结果而无需写出过程),为考查数形结合的思想提供了方便,能突出考查考生将复杂的数量关系问题转化为直观的几何图形问题来解决的意识。而在解答题中,考虑到推理论证的严谨性,对数量关系问题的研究仍突出代数的方法而不是提倡使用几何的方法,解答题中对数形结合的思想的考查以由“数”到“形”的转化为主。

阅读全文

与数学归纳法体现了什么数学思想相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:739
乙酸乙酯化学式怎么算 浏览:1404
沈阳初中的数学是什么版本的 浏览:1350
华为手机家人共享如何查看地理位置 浏览:1042
一氧化碳还原氧化铝化学方程式怎么配平 浏览:884
数学c什么意思是什么意思是什么 浏览:1408
中考初中地理如何补 浏览:1299
360浏览器历史在哪里下载迅雷下载 浏览:701
数学奥数卡怎么办 浏览:1387
如何回答地理是什么 浏览:1023
win7如何删除电脑文件浏览历史 浏览:1055
大学物理实验干什么用的到 浏览:1484
二年级上册数学框框怎么填 浏览:1699
西安瑞禧生物科技有限公司怎么样 浏览:973
武大的分析化学怎么样 浏览:1247
ige电化学发光偏高怎么办 浏览:1337
学而思初中英语和语文怎么样 浏览:1650
下列哪个水飞蓟素化学结构 浏览:1423
化学理学哪些专业好 浏览:1486
数学中的棱的意思是什么 浏览:1057