A. 结构优化设计的数学模型
轻钢结构设计的最终目的是要给出一个经济合理的设计方案。优化设计方法,能较好地适应这方面的要求。轻钢结构采用优化设计,对于减轻结构重量、降低用钢量和结构造价有着明显的意义。目前国内对轻钢结构的优化设计已进行了一些研究和应用,编制了相应的计算程序,利用计算机实现了对截面的自动优选以求得重量最小、用料最省或造价最低的设计方案。这对于提高轻钢结构的设计质量,加快设计进程都起了一定的作用。下面针对轻钢结构建立其优化设计的数学模型。
1.设计变量
轻钢结构的主要几何参数如跨度、檐口高、屋面坡度、纵向柱间距等通常由业主或建筑师确定。可供优化的变量主要是截面参数。具体说,就是各工字钢截面的翼缘宽、厚,腹板的高、厚等。钢板的厚度是离散变量,而腹板和翼缘的高(宽)一般也是从一系列有规律的数中选取,因此轻钢结构的设计变量通常是离散变量。
2.目标函数
结构重量是轻钢结构优化设计的重要指标,且比较容易写成设计变量的函数形式,故轻钢结构通常以用钢量最少为优化目标。
3.约束条件
轻钢结构优化设计必须满足以下约束条件:
(1)强度、稳定约束条件。
轻钢结构构件必须满足强度和稳定要求。
(2)刚度约束条件。
轻钢结构的构件尺寸在优化时,结构的整体刚度必须满足变形控制要求。具体说,就是横梁的最大垂直位移、柱顶的最大水平位移、吊车轨顶处的最大水平位移等必须满足有关规范规定的变形控制值。
(3)截面尺寸约束条件。
轻钢结构截面尺寸的选择必须满足有关规范的构造要求和使用要求,如所有截面的腹板高度必须大于翼缘宽度,所有截面的翼缘厚度必须比腹板厚度大2mm以上等。
(4)结构整体约束条件。
轻钢结构的优化设计必须满足结构整体约束条件,即构件截面尺寸的选择必须要保证梁、柱截面的连续性以及合理性,满足常规的加工和使用要求等。
(5)变量的上、下限约束条件。
B. 优化数学建模时需要考虑哪些因素
设计变量、目标函数、约束条件。数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。对于广大的科学技术工作者对大学生的综合素质测评,对教师的工作业绩的评定以及诸如访友,采购等日常活动,都可以建立一个数学模型,确立一个最佳方案。建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁。
C. 建议优化设计数学模型的基本原则是确切反应什么问题
建立优化设计数学模型的基本原则是确切反映(工程实际问题),的基础上力求简洁 。
D. 数学建模的模型改进怎么写
主要就是先说一下所建立模型的优点和缺点,然后跟据模型缺点结合据具体情况进行模型的优化,比如说模型有的地方假设的不合理,或者是与实际结合的不好,就把不合理的地方改合理了,算法有缺陷的就把算法改改,这部分的篇幅无需太多,大概提一下就行了。不知道具体的问题是什么,所以只能给个大概写法。建模时一定要把摘要写好。给你粘上我建模时的模型改进那一段你参考一下吧,希望对你有帮助(七、模型改进 我们这个模型,对成本和售价的假设是静态的,成本和售价不随时间变化而变化。这种假设只是为了解题的方便,模型进一步完善就要把成本和售价动态化,更接近与实际,得到的利润也更准确更具有说服力。
在建模的时候,忽略了政府的宏观调控对价格的影响,事实上,每个月能购买到的机箱数量也不一定是充足的所以每月购买的机箱数也是一个动态变量,模型的改进也要考虑政策的影响。模型的改进就是考虑周期成本和政府政策
)
E. 数学建模中对于最优化的问题如何建立模型
做图
F. 如何将现实生活中的问题转化为数学模型,并进行问题的优化求解。
数学知识来源于生活,又服务于生活。数学应该是学生生活中不可缺少的部分。基于此,数学教学要从学生的生活经验和已有的知识出发,创设生动、有趣的情境,引导学生从生活实践中观察问题、思考问题,去发现数学、理解数学,能根据不同的实际问题建立相应的数学模型。一、构建三角形模型求解例如:在学完《三角形》后,为巩固三角形的有关知识可出题目为:有一池塘,要测量池塘的两端AB的距离,直接测量有障碍,能有什么方法测出AB的长度?建模一:构造直角三角形,运用勾股定理解决问题,求出AB;建模二:构造等腰三角形或等边三角形,求出AB;建模三:构造三角形及其中位线,利用中位线的性质求出AB;建模四:构造两个三角形,利用全等或相似性质来求出AB。在解决问题时,应鼓励学生大胆提出自己的建模方法,然后再补充,当学生自己找到建模方法后,就会获得成功的满足,产生愉快的学习情绪。二、构建方程模型求解下面例题是生活中一个很现实的问题,它涉及到的量多且复杂,通过分析寻找该问题中各量之间的关系可构建方程或不等式模型。
找出问题所需的条件,再加以分析,列出式子,计算,验证解答!希望您能学的开心!
望采纳!
G. 数学建模优化问题中 一般模型检验如何写
你好,模型的检验一般是从两个角度出发的
一个是模型的稳定性,也就是你所建的模型中有参数,当在一定程度上,你改变其中参数的取值范围,你所得的结果是不是相差不大,如果不大,说明模型较稳定。例如:y=ax1+bx2;且a+b=1;a,b就是权重参数,当你改变a值,看看结果怎么变化,这就是优化。当然要是你是用算法的话,用计算机模拟就更好了。
另一个就是模型的正确性,也就是你建的模型的结果是正确的。你可以用另一种很简单的方法论证你的结果,或者与你看到的文献中其他人研究的结果对比,从而得出你的结果正确性。
希望能帮到你,我是数学建模爱好者,参加过数学建模国赛和美赛,还有很多比赛,有兴趣可以成为朋友哦
H. 数学建模中的最优化问题用什么方法解决比较好如何实现
线性规划、0-1规划都可以
I. 数学建模中的多目标优化问题该怎么选择方法
复杂问题的求解往往采用先选取一个初始解,然后采用某种算法进行迭代的方式。fgoalattain函数应该就是采用这种方式。和传统的求解方式不同,这种方式求解并不能准确的得到最优解,而是通过算法向最优解逼近。算法的不同、初始解的不同以及迭代的次数都有可能影响到最终解,所以得到不同的解也是很正常的
J. 数学建模最优化方法
1、多目标优化问题。
对于教师和学生的满意可以用几个关键性的指标,如衡量老师的工作效率和工作强度及往返强度等,如定义
效率w=教师的实际上课时间/(教师坐班车时间+上课时间+在学校逗留时间)。
然后教师的满意度S1为几个关键性指标的加权平均。注意一些无量纲量和有量纲量的加权平均的归一化问题。
对于学生可以定义每门课周频次,每天上课频次等等
对于学校满意,可以定义班车出动次数,这个指标和教师的某一个指标是联动的,教室和多媒体使用周期频次和使用时长等等。
2、根据第一问的模型按照数据进行求解
3、教师、学生和学校的满意度作为指标
4、根据结果提出合理化建议