导航:首页 > 数字科学 > 数学如何贯通

数学如何贯通

发布时间:2022-04-03 04:54:45

㈠ 怎么把数学学到最好

学习数学不仅要有强烈的学习愿望和学习热情,而且还要有科学的学习方法,才可能把数学学好。从分析数学学习活动可知,学习方法既受课堂教学的制约,又具有自身的一些特点。所以,我们一方面提出与课堂教学相配合的学习方法,另一方面又根据数学学习的自身特点,概括出一些特殊的学习方法。 一 预习、听课、复习、作业的方法 与数学课堂教学相适应的学习方法,就是预习、听课、复习、作业的方法等的基本方法。 1、预习的方法 预习是上课前对即将要上的数学内容进行阅读,了解其梗概,做到心中有数,以便于掌握听课的主动权。预习是独立学习的尝试,对学习内容是否正确理解,能否把握其重点、关键,洞察到隐含的思想方法等,都能及时在听课中得到检验、加强或矫正,有利于提高学习能力和养成自学的习惯,所以它是数学学习中的重要一环。 数学具有很强的逻辑性和连贯性,新知识往往是建立在旧知识的基础上。因此,预习时就要找出学习新知识所需的知识,并进行回忆或重新温习,一旦发现旧知识掌握得不好,甚至不理解时,就要及时采取措施补上,克服因没有掌握好或遗忘带来的学习障碍,为顺利学习新内容创造条件。 预习的方法,除了回忆或温习学习新内容所需的旧知识(或预备知识)外,还应该了解基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里,等等。预习时,一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或弄不懂的地方与问题,最后确定听课时要解决的主要问题或打算,以提高听课的效率。在时间的安排上,预习一般放在复习和作业之后进行,即做完功课后,把下次课要学的内容看一遍,其要求则根据当时具体情况灵活掌握。如果时间允许,可以多思考一些问题,钻研得深入一些,甚至可做做练习题或习题;时间不允许,可以少一些问题,留给听课去解决的问题就多一些,不必强求一律。 2、听课的方法 听课是学习数学的主要形式。在教师的指导、启发、帮助下学习,就可以少走弯路,减少困难,能在较短的时间内获得大量系统的数学知识,否则事倍功半,难以提高效率。所以听课是学好数学的关键。 听课的方法,除在预习中明确任务,做到有针对性地解决符合自己的问题外,还要集中注意力,把自己思维活动紧紧跟上教师的讲课,开动脑筋,思考教师怎样提出问题,分析问题,解决问题,特别要从中学习数学思维的方法,如观察、比较、分析、综合、归纳、演绎、一般化、特殊化等,就是如何运用公式、定理,了解其中隐含着的思想方法。 听课时,一方面理解教师讲的内容,思考或回答教师提出的问题,另一方面还要独立思考,鉴别哪些知识已经听懂,哪些还有疑问或有新的问题,并勇于提出自己的看法。如果课内一时不可能解决,就应把疑问或问题记下,留待自己去解决或请教老师,并继续专心听老师讲课,切勿因一处没有听懂,思维就停留在这里,而影响后面的听课。一般,听课时要把老师讲课的要点、补充的内容与方法记下,以备复习之用。 3、复习的方法 复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精炼概括、牢固掌握的目的。复习应与听课紧密衔接、边阅读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷与疑问。对学习的内容务求弄懂,切实理解掌握。如果有的问题经过较长时间的思索,还得不到解决,则可与同学商讨或请老师解决。 复习还要在理解教材的基础上,沟通知识间的内在联系,找出其重点、关键,然后提炼概括,组成一个知识系统,从而形成或发展扩大数学认知结构。 复习是对知识进行深化、精炼和概括的过程,它需要通过手和脑积极主动地开展活动才能达到,因此,在这个过程中,提供了发展和提高能力的极好机会。数学的复习,不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生的,是如何展开或得到证明的,其实质是什么,怎样应用它等。 4、作业的方法 数学学习往往是通过做作业,以达到对知识的巩固、加深理解和学会运用,从而形成技能技巧,以及发展智力与数学能力。由于作业是在复习的基础上独立完成的,能检查出对所学数学知识的掌握程度,能考查出能力的水平,所以它对于发现存在的问题,困难,或做错的题目较多时,往往标志着知识的理解与掌握上存在缺陷或问题,应引起警觉,需及早查明原因,予以解决。 通常,数学作业表现为解题,解题要运用所学的知识和方法。因此,在做作业前需要先复习,在基本理解与掌握所学教材的基础上进行,否则事倍功半,花费了时间,得不到应有的效果。 解题,要按一定的程序、步骤进行。首先,要弄清题意,认真读题,仔细理解题意。如哪些是已知的数据、条件,哪些是未知数、结论,题中涉及到哪些运算,它们相互之间是怎样联系着的,能否用图表示出来,等等,要详加推敲,彻底弄清。 其次,在弄清题意的基础上,探索解题的途径,找出已知与未知,条件与结论之间的联系。回忆与之有关的知识方法,学过的例题、解过的题目等,并从形式到内容,从已知数、条件到未知数、结论,考虑能否利用它们的结果或方法,可否引进适当辅助元素后加以利用是否能找出与该题有关的一个特殊问题或一个类似问题,考察解决它们对当前问题有什么启发;能否把分开,一部分一部分加以考察或变更,再重新组合,以达到所求结果,等等。这就是说,在探索解题过程中,需要运用联想、比较、引入辅助元素、类比、特殊化、一般化、分析、综合等一系列方法,并从解题中学会这一系列探索的方法。 第三,根据探索得到的解题方案,按照所要求的书写格式和规范,把解的过程叙述出来,并力求简单、明白、完整。最后还要对解题进行回顾,检查解答是否正确无误,每步推理或运算是否立论有据,答案是否说尽无遗;思考一下解题方法可否改进或有否新的解法,该题结果能否推广(事实上中学课本中不少题目是可以推广的)等,并小结一下解题的经验,进而发展与完善解题的思想方法,总结出带有规律性的东西来。 二“由薄到厚”和“由厚到薄”的学习方法 “由薄到厚”和“由厚到薄”是数学家华罗庚多次提到的治学方法,他认为学习要经过“由薄到厚”和“由厚到薄”的过程。“由薄到厚”是理解和弄懂所学的数学知识,知其然并知其所以然。学习不仅要理解和记住概念、定理、公式、法则等,而且还要想一想它们是如何得来的,与前面的知识是怎样联系着的,表达中省略了什么,关键在哪里,对知识是否有新的认识,有否想到其他的解法等等。这样细加分析、考虑后,就会对内容增添某些注解,补充一些的解法或产生新的认识等,出现了“书越读越厚”。 但是学习不能到此止步,还需要把学过内容贯串起来,加以融会贯通,提炼出它的精神实质,抓住重点、线索和基本思想方法,组织整理成精炼的内容,这就是一个“由厚到薄”的过程。在这过程中,不是量的减少,而是质的提高,所以具有更重要的作用。通常在总结一章、几章或一本书的内容时,就要有这种要求,运用这种方法。这时由于知识出现高度概括,就更能促进知识的迁移,也更有利于进一步学习。 “由薄到厚”和“由厚到薄”是一个螺旋上升的过程,它具有不同的层次和要求,学习中需要经过从低到高多次的运用,才能收到应有的效果。这一学习方法体现着“分析”与“综合”、“发散”与“收敛”的辩证统一,就是说数学学习需要这两者统一起来。 三 接受学习与发现学习相结合的方法 数学学习应是有意义接受学习和有意义发现学,如何使两者互相配合、有机结合,充分 发挥各自和综合的效力这是学习方法的一个重要方面。 接受学习,不论是听系统的讲授,还是以定论的形式给出的教材,都不涉及任何的独立发现。但在学习过程中,学生处于积极、主动的状态,并非只是单纯的接受,他们总不断地向自己提出问题,如定理是如何发现或产生的,证明的思路是怎样想出来的,中间要攻破哪几个关键的地方。许多数学家都十分强调“应该不只胀到书面上,而且还要看到书背后的东西。”在进行接受学习时,还要增添某些发现学习的万分,从中学习创造、发明的思想和方法,而不仅仅停留在知识的接受上。 发现学习,是依靠自己对所提供的材料或问题的观察、比较、分析、综合等,独立地了现的解决某问题,从而获得新知识。在解决问题时,要真正理解问题中所涉及的要领、原理、公式、定理和法则,懂得每步操作的意义,以及提出假设、检验假设的目的等。解决问题,总需要联想以往学习过和知识与方法,一时回忆不起来的,还要重新复习,以求进一步理解的应用。有是遇到困难问题,甚至还在查看参考书或请教老师者能解决。可见,这期间也穿插着接受学习。 数学学习既需要接受学习,以便在短时间内获得大量前人积累起来的宝贵知识财富,也需要发现学习,以利于思维、培养创造能力。因此,学习要根据自身的年龄、学习能力特点和教学内容的要求,使两者紧密结合起来。
采纳哦

㈡ 数学如何学会总结

目前学校的教学方法,最主要的就是教会学生“总结”。而总结的核心,就是“分类”。目前的这种以分类为核心的总结方法,由于过于僵化,所以,随着分类不断细化,思维就必然越来越僵化。

比如某个学生本来又会做三角函数的题目,也会做一元二次方程的题目,也会用一元二次方程的方法解决很多三角函数的题目,而且做题速度很快。但老师教会他“总结”后,他把三角函数的题目分成好几类,每一类又分成了好几类,等等不断的细分下去。

然后,在分类过程中,进行说明,比如这类题目应该用一元二次方程,另外一类题目不该用一元二次方程,等等。经过这么细致的分类之后,他确实有能会做了一些新的类型的题目,但原来的快速解题能力明显的下降了。而且,以前做题的那种轻松、流畅的感觉,彻底消失了。

那么,如何解决“分类”与“灵活”的矛盾呢?

其实方法很简单,就是在“分类”的过程中,你的进一步的“分类”,不要受其他人的已有的分类的限制,也不要被自己的分类所限制,也不要被自己的总结的各种方法所限制。你可以横向分类、竖向分类、正向分类、反向分类,分类之后再分类,不同的分类之间进行分类,等等。

对于数学,还有一些方法:你总结出很多解题技巧之后,进行分类。例如你总结出某种解题技巧可解决哪些题型,而哪些题型可以变化成另外的题型,等等。总结这些东西到一定程度之后,你就尝试着“自己出题”,在自己出题的过程中,针对某一个题型,找“一题多解”类参考书,尤其是一种题型有几十种以上解题技巧的,专门找超出你分类范围之外的,这样,你的大脑和笔记本中的“解题技巧体系”就得到进一步扩充了。

从“原理”的角度,“分类”是“思维支脚”的形成和细化的一个重要方法这个过程中,你的大脑中的“思维海”被强行“犁”出了很多“思维缝隙”,这些“思维缝隙”有可能把原有的“思维钩子”给弄断掉了。所以,你需要重塑或者新建一些“思维钩子”(把断掉的“思维钩子”再连接起来,那是不可能的,“思维钩子”可不是现实生活中的绳子)。

㈢ 高中数学怎么能够学得融汇贯通

切,大青,信楼上那个总结神马的还不如做题呢==这…可以问问老成啊

㈣ 高中数学数列类型问题如何融会贯通。

其实数列题的题型很有限。
基础的分等差和等比。 选择题里面只会给出足够的条件 利用公式就可以算未知某一项
还有求前n项和的。根据不同的形式 有裂项相消,错位相减 等几种方法。
还有证明不等式的,也基本上是化简求和比大小。或者取极值,比较灵活。

等差数列
等差公式:an=a1+(n-1)d
等差求和:Sn=n (a1+an)/2
=na1+n(n-1)d/2
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{ a }、{ b }为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列.
⑷对任何m、n ,在等差数列{ a }中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等差数列时,有:a + a + a + … = a + a + a + … .
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).
⑺如果{ a }是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列{ a }中,a -a = a -a = md .(其中m、k、 )
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a ,a ,a 为等差数列中的三项,且a 与a ,a 与a 的项距差之比 = ( ≠-1),则a = .
等差数列前n项和公式S 的基本性质
⑴数列{ a }为等差数列的充要条件是:数列{ a }的前n项和S 可以写成S = an + bn的形式(其中a、b为常数).
⑵在等差数列{ a }中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S -S = a , = .
⑶若数列{ a }为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为 .
⑷若两个等差数列{ a }、{ b }的前n项和分别是S 、T (n为奇数),则 = .
⑸在等差数列{ a }中,S = a,S = b (n>m),则S = (a-b).
⑹等差数列{a }中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.
⑺记等差数列{a }的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小.
3.等比数列
等比公式:an=a1.q^(n-1)
等比求和:sn=a1(1-q^n)/(1-q)
=a1-an.q/(1-q)
⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q ( m为等距离的项数之差).
⑵对任何m、n ,在等比数列{ a }中有:a = a · q ,特别地,当m = 1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.
⑶一般地,如果t ,k,p,…,m,n,r,…皆为自然数,且t + k,p,…,m + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等比数列时,有:a .a .a .… = a .a .a .… ..
⑷若{ a }是公比为q的等比数列,则{| a |}、{a }、{ka }、{ }也是等比数列,其公比分别为| q |}、{q }、{q}、{ }.
⑸如果{ a }是等比数列,公比为q,那么,a ,a ,a ,…,a ,…是以q 为公比的等比数列.
⑹如果{ a }是等比数列,那么对任意在n ,都有a ·a = a ·q >0.
⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.
⑻当q>1且a >0或0<q<1且a <0时,等比数列为递增数列;当a >0且0<q<1或a <0且q>1时,等比数列为递减数列;当q = 1时,等比数列为常数列;当q<0时,等比数列为摆动数列.
4.等比数列前n项和公式S 的基本性质
⑴如果数列{a }是公比为q 的等比数列,那么,它的前n项和公式是S =
也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q = 1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q = 1和q≠1进行讨论.
⑵当已知a ,q,n时,用公式S = ;当已知a ,q,a 时,用公式S = .
⑶若S 是以q为公比的等比数列,则有S = S +qS .⑵
⑷若数列{ a }为等比数列,则S ,S -S ,S -S ,…仍然成等比数列.
⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S 与T ,次n项和与次n项积分别为S 与T ,最后n项和与n项积分别为S 与T ,则S ,S ,S 成等比数列,T ,T ,T 亦成等比数列.

㈤ 如何在数学教学中做到融会贯通

首先,六爻与八字的基础是一样的。基础是真的很重要,如果你基础不好,那么融会贯通也只是想想而已。从题主描述的来看,题主的基础应该是不怎么好的。
其次,梅花是入门非常简单,5分钟就会起卦,但是想要精进是非常难的。而且预测就是这样,你刚学的,断的比学了很多年的还要准,因为人是有直觉的呀,但是很快的,这种直觉会消失,大概半年左右。
最后,想要融会贯通,最重要的还是要再每一个术数上面花费大量的时间,至少要做到中等以上的水平,这样,你基础稳固了,也知晓了周易的规律,那么你就能做到融会贯通了,否则是非常难的

㈥ 考研数学怎样才能融会贯通

基础复习阶段(一):这个阶段我是从7月1日进入的。这时已经进入了高强度的复习阶段。这段时间我主要看《复习指南》。这是一本400余页的厚书。我对这本书的评价是“博大精深”,不但总结了大纲要求的所有基础知识和概念,同时还汇集了很多例题、习题,包括历年考研真题。因此在预热后踏踏实实地把这本书过一遍,对基础知识和解题思路的掌握、理解非常有好处。看这本书时需要注意:

1)对基础知识和概念一定用心领会和理解,如果有不懂的,必须借助辅助资料搞清楚,做到这一点后方可看例题和习题。

2)对每道例题和习题,必须在看答案和解题思路前,自己先动手做一遍,然后再对照书上的答案和解题思路总结和反省,好好把感受写在旁边。用不同记号对题目进行标识。当时我主要分了三种情况:一是自己会做的,二是自己有正确思路,但不能完全写出来,或者没有做对的,三是自己没有思路或思路错误的。做好这些标识,可以使自己后续复习中更有针对性。

3)一定要动笔做题。你自己可以做做试验,把一道题看懂了,觉得没有问题的时候,试试自己能否背着书流畅地写下来。我相信大多数人是不能的。因此,我强烈建议在复习之初就养成动手的习惯,这是检验自己是否完全掌握的唯一标准。

4)一定要重视总结。看概念和知识要点的时候,要把一些重点词句划出来;对于开始不太懂的,理解之后一定也把自己的理解写出来。做题时,对于前面讲的第二、三种情况也一定要记下自己当时为什么做不出来,今后看到何种典型题目,应该具备何种反应和思路。

5)这本厚书博大精深,汇聚了很多难题,因此第一遍复习时会遇到很多困难,甚至折磨。这时候需要告诉自己,这是正常现象。试想,如果你一拿到这本书就很容易地看下去,那么就没有复习的必要了。这阶段,一定不能丧失信心,一定要坚持下来,一步一步地往前走。遇到实在搞不懂的问题,先放一放,有机会可以通过请教老师、同学或者查阅资料搞懂。事实上,有些问题会在以后的复习中“恍然大悟”。

基础复习阶段(二):这个阶段与第一阶段可以穿插进行。就我而言,我自己是从8月开始第二阶段的。这个阶段主要是利用听辅导课的机会,对数学基础知识进行第二遍“扫荡”。由于有了第一阶段的基础,听课时已经有了一定的印象,因此基本上可以跟上老师的节奏。课后,结合课堂笔记和《复习指南》,再次巩固。我觉得这两个过程的交替进行,对大部分基础知识都有了较好的理解和掌握。另外辅导班因人而异,我因为不喜欢去上人多的那种辅导班,所以上了个网校的,能反复听课的那种,这样方便来回巩固老师讲的内容。唯一不足是有一部分讲义需要自己下载打印。网校名字叫天道考研网校,其他也有很多网校,我感觉这一家的相对好些吧。有句话叫“诚者,天之道也”,所以我对它们这个名字非常欣赏。

㈦ 怎样学好数学

我以前数学也很差,但是在一个学期的时间里我就成功的攻破他。首先,对于所学知识要课前预习,找出自己部明白的地方,这样在听课时能更有针对性,效率很高。其次,对于所学的新课要在下课后即使温习笔记。再者,要在课下做大量的习题加以巩固,将不会做的题目多问老师,因为老师的解题方法会多样化并会告诉你阶梯思路和技巧。最后,要将错题收集起来形成一个错题集,反复看。还要定期将所学的知识进行归纳整理,理清思路和脉络。

㈧ 数学是如何提升

1、预习

预习是上课前准备的一个过程,养成良好的预习习惯,有两个好处:

(1).提前了解上课老师要讲解的知识,从而可以达到更深了解的目的

(2).对自己在看书过程中不理解的地方,则会在上课的过程中听的更仔细,能更有目的地听课
2、上课认真听讲

这是提高数学的关键一步。在老师的带领,能更快了解知识点
3、课后多做习题

数学的学习是艰难的,但也是简单的。毕竟上课的时间是有限的,因此需要课后话费时间去仔细研究。多做习题可以帮助我们理解和掌握知识点,只有掌握知识点,才会发现数学很简单。
4、课后认真复习

复习是必不可少的一步,只有经常复习,才能牢牢记住知识点,并在以后的学习中才能将知识点融会贯通。

㈨ 如何学会 微积分 高等数学 如何融会贯通

兴趣是一切的根本,高等数学也不例外,高等数学公式是重要的,但是还要需要的是图形与数学语言的双重结合,书本中的知识是很死板的,建议你如果实在不行的话,去买本娱乐与学习双结合的就行,特别是书本中的例题,还有就是图形,这微积分只要是兴趣,一切都可以,在高深的函数你也会,其实数形结合是最好的方法

阅读全文

与数学如何贯通相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:748
乙酸乙酯化学式怎么算 浏览:1413
沈阳初中的数学是什么版本的 浏览:1367
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:896
数学c什么意思是什么意思是什么 浏览:1424
中考初中地理如何补 浏览:1314
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1405
如何回答地理是什么 浏览:1038
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1495
二年级上册数学框框怎么填 浏览:1715
西安瑞禧生物科技有限公司怎么样 浏览:1014
武大的分析化学怎么样 浏览:1257
ige电化学发光偏高怎么办 浏览:1346
学而思初中英语和语文怎么样 浏览:1671
下列哪个水飞蓟素化学结构 浏览:1433
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1073