导航:首页 > 数字科学 > 如何进行数学概念教学

如何进行数学概念教学

发布时间:2022-04-04 12:10:03

① 怎样进行高中数学概念教学

在概念教学时,要刻意进行“图形描述”和“图形分析”,进行符号意识的发展。第一,从多个维度理解概念。从生产生活现象中抽取数学本质,从字面意思分析概念(把数学课当语文课上),用通俗的自然语言解释数学概念,用图形描述概念,用图形分析概念,从自然语言和图形语言逐步过渡到符号语言。第二,加强对数学概念的辨析。在初步理解的基础上加强概念辨析题的练习:判断正误,错误的要说明理由并修正完善。以此培养学生的思辨能力,加深对概念的理解。第三,加强运用基本概念直接解题的练习,以此培养学生溯根求源的精神。

② 数学概念教学方法具体是什么

教学时注意概念的内涵和外延
概念的内涵指的是概念所反映对象的本质特征;概念的外延指的是概念所反映的本质属性的对象,概念的内涵是质的方面,概念的外延是概念量的方面,它说明概念所反映的事物有哪些.概念的内涵和外延是对立统一的,内涵明确,则外延清晰;外延清晰则内涵明确.例如在新课程必修4的角的概念的推广的教学中,角的概念的内涵是平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形,外延就是角的分类:正角,负角和零角.在教学中,可以通过变式来明确概念的外延.
例:函数奇偶性的教学(人教A版)
函数的奇偶性是必修1的内容,是函数单调性之后很重要的一个性质.在教材中,通过具体的函数得到了偶函数的概念,
由,得到了奇函数的概念.教材中通过例5让学生判断函数的奇偶性,笔者认为,通过这样的习题还没有真正明确函数奇偶性这个概念的外延.
………………更多文章详情详见教育界杂志社官网,希望能帮到你!

③ 怎样进行小学数学概念教学

(希望以下我转载的文章对你有些许帮助)
怎样让这些枯燥、抽象的概念变得生动有趣,使课堂教学更有效,减轻孩子们的学习负担,让概念在孩子们心中得到完美内化呢?或许我们可以从以下几方面入手。
一、概念的引入讲述宜直观形象
针对第一学段孩子的抽象思维能力较弱,对数学语言描述的概念理解较为困难,我们在教学中应该多用形象的描述,创设有趣的问题情境,打些合理的比方等,努力让孩子们理解所学概念,可以采用以下一些方式来进行教学。
夸张的手势,丰富的肢体语言,理解运算所蕴含的意义,区分概念的差别。在让一年级的孩子认识加减法的时候,我举起双手像音乐指挥家一样,左边一部分,右边一部分,两部分合在一起就用加号,加号就是横一部分,竖一部分组起来的,减法则反过来展示。孩子们看得有趣,记得形象,不但记住了加减号还明白了加减号的用法。在教二年级孩子感受厘米和米时,我让孩子们学会用手势来表示1厘米和1米,使得孩子们在估计具体物体的长度时有据可依。形象生动的讲解,让孩子们自然接受数学符号。教师的语言讲解也要力求符合学生实际,特别是第一次描述时,教师一定要斟字酌句地用孩子能理解的语言尽可能用数学语言简洁地描述。因为对于第一次接触新概念的孩子们来说,第一印象是最为深刻的。当然在适当的时候我们也可以选择让孩子们根据自己的理解来说一说来试着对概念进行解释,一方面同龄人的解释会让孩子们概念的理解更为容易;另一方面也可以锻炼一下孩子的数学语言表达能力。我们要记住:孩子们的数学概念应该是逐级递进、螺旋上升的(当然要避免不必要的重复),以符合学生的数学认知规律。很多时候第一学段的孩子对于部分数学概念,只要能意会不必强求定要学会言传。
二、概念的学习宜多感官参与
心理学家皮亚杰指出:“活动是认识的基础,智慧从动作开始。”书上的数学概念是平面的,现实却是丰富多彩的,照本宣科,简单学习自然无法让这些数学概念成为孩子们数学知识的坚固基石。如果我们能够让孩子们的多种感官参与学习,让平面的书本知识变得多维、立体,让孩子们的感觉和思维同步,相信能取得很好的教学效果。
教学《认识钟表》时,鉴于时间是一个非常抽象的概念,时间单位具有抽象性,时间进率具有复杂性,所以在教学时我以学生已有生活经验为基础,帮助学生通过具体感知,调动孩子的多种感官参与学习,在积累感性认识的基础上,建立时间观念,安排了以下一些教学环节。1.动耳听故事,调动情感引入。讲了一个发生在孩子们身边的故事:豆豆由于不会看时间,结果错过了最爱看的动画片。2.动眼看钟面,听介绍,初步了解钟面,形成“时、分”概念。动画是孩子们的最爱,让钟表爷爷来介绍钟面、时针、分针,生动有趣的讲解,让孩子们的心立刻专注地进行于课堂上。3.动嘴说时间,喜好分明。4.动手拨时间。5.动脑画时间(此时在前几项练习的基础上增加了一定难度,如出示一些没有数字的钟面,只有12、3、6、9四点的钟面,让孩子们对时针、分针的位置进行估计)。
通过这些活动,使孩子们口、手、耳、脑并用,自主地钻入到数学知识的探究中去,让时间从孩子们的生活中伶伶俐俐地变成数学知识,形成了数学概念。同时也让学生充分展示自己的思维过程,展现自己的认识个性,从而使课堂始终处于一种轻松、活跃的状态。
另外,教师在教学的过程中也应该对所教概念的知识生长点,今后的发展(落脚点)有一个全面、系统的认识,才能使得所教概念不再那么单薄,变得厚重起来。孩子对概念的来龙去脉有一个更清晰完整的了解,理解起来也就变得轻松。
如果我们能让一个概念变得丰满,变得多彩,让它能从书的平面描述中凸现出来,那么孩子们掌握概念的过程便也会变得立体、多维,他们的学习过程也就变得积极、主动,而这不正是我们数学学习所需要的吗?
三、概念的练习宜生动有趣
第一学段初期的孩子从心理状态上来说较难适应学校的教学生活,在学习中总是会感到疲劳乏味,碰到相对枯燥的概念教学时这种疲惫更是由内而外。德国教育家福禄培尔在其代表作《幼儿园》中认为,游戏活动是儿童活动的特点,游戏和语言是儿童生活的组成因素,通过各种游戏,组织各种有效的活动,儿童的内心活动和内心生活将会变为独立的、自主的外部自我表现,从而获得愉快、自由和满足。将游戏用于教学,将能使儿童由被动变为主动,积极地汲取知识。
游戏、活动是孩子们的最爱,让他们在游戏活动中获取知识,这样的知识必定是美好而快乐的。有了这样的感觉,孩子们学习数学的兴趣一定是浓厚的,我们再让数学的魅力适度展示,让他们感觉到学习数学不但是一件轻松、快乐的事更是一件有意义的事。我想他们继续进行探索、学习新知的动力就来自于此了。
四、概念的拓展宜实在有效
美国实用主义哲学家、教育家杜威从他的“活动”理论出发,强调儿童“从做中学”“从经验中学”,让孩子们在主动作业中运用思想、产生问题、促进思维和取得经验。确实,在一些亲力亲为的数学小实验中,孩子们表现出了一种自然的主动的学习情绪。他们以充沛的精力在这些小实验、小研究中主动地讨论所发生的事,想出种种方案去解决问题,使智力获得了充分的应用和发展。在数学概念的教学中,设计一些孩子能力所能致的小研究活动,可以让孩子对这些抽象的数学概念得到进一步体验、内化,得到课堂教学所不能抵达的效果。
孩子对于较大的单位比如说“千米”“吨”等,由于其经验的限制往往没有什么概念。只是,教师这样说了,他也便这样记了,对他而言也仅仅只是一个简单的字符而已。仅仅通过课堂教学,那么“千米”在孩子们的印象中便是“1千米=1000米”是一个不能用手丈量的长度;“吨”在孩子们的印象中便是“1吨=1000千克”是一个拿不动的质量。至于“1千米”到底有多长,“1吨”到底有多重?孩子们心中并无底,才使得经常会出现:一幢居民楼高约20(千米);一节火车车厢载重量为60(千克)这样的笑话。如果我们能让孩子们来进行切身的体验再附以一些小实验,这些问题便能迎刃而解了。
概念是枯燥的、乏味的,但却是重要的。对于第一学段的孩子们我们不能假定他们都非常清楚学习数学概念的重要性,指望他们能投入足够的时间和精力去学习数学概念,也不能单纯地依赖教师或家长的“权威”去迫使孩子们这样做。那么就需要我们积极地引领他们,使之学得轻松,学得扎实,让他们体会到数学所散发出的无穷魅力,让概念深入心中,为数学学习服务。

④ 如何进行小学数学概念课教学

数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。如在教平均数应用题时,利用铅笔做教具,重温“平均分”的概念。

⑤ 如何做好数学概念教学

概念是客观事物本质属性在人们头脑中的反映。数学概念是反映现实世界的空间形式和数量关系的本质属性的思维形式。在中学数学教学中,正确理解数学概念是掌握数学知识的前提,是学好定理、公式、法则和数学思想的基础,搞清概念是提高解题能力的关键。只有对概念理解得深透,才能在解题中做出正确的判断。初中数学教学内容里有大量的数学概念,它既是数学教学的重要环节,又是数学学习的核心。因此,作为教师在教学中必须加强数学概念的教学。
一、做好概念的引入
1.从实际引入。概念属于理性认识,它的形成依赖于感性认识,学生的心理特点则是容易理解和接受具体的感性认识,所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,比较容易揭示概念的本质和特征。例如,讲“数轴”的概念时,教师可模仿秤杆上用点表示物体的重量。秤杆具有三个要素:①度量的起点;②度量的单位;③明确的增减方向。这样以实物启发人们用直线上的点表示数,从而引出了数轴的概念,让学生从先对概念的现实原型有所感受,再将抽象的特征浓缩成数学概念。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。
2.从旧概念的基础上引入。在教学新概念前,如果能对学生认知结构中原有的适当概念作一些类比引入新概念,则有利于促进新概念的形成。例如:在教学一元二次方程时,可先复习一元一次方程,因为一元一次方程是基础,一元二次方程是延伸,复习一元一次方程是合乎知识逻辑的,二者的差异仅在于未知数的最高次数不同,因此很容易建立一元二次方程的概念。
二、抓住概念的本质
1.揭示含义,突出关键词。数学概念严谨、准确、简练。教师的语言对于学生感知教材、形成概念具有重要的意义,因此要特别注意用词的严格性和准确性。教师要用生动、形象的语言讲清概念中关键的字、词、句的意义,这是指导学生掌握概念并认识概念的前提。
例如:“含有相同的字母,并且相同字母的指数也相同的项叫做同类项。”这个概念中,可抓住“相同”这一关键字作分析:出现了几次相同?相同的是什么?又如“最简二次根式”的概念中,要抓住满足的两个条件这些关键字眼。

期刊文章分类查询,尽在期刊图书馆
只有学生真正理解了概念,那么在解决问题的时候,才能得心应手,不会出现错误。
2.弄清概念的内涵和外延。数学概念的内涵反映了数学对象的本质属性,外延是数学概念所有对象的总和,对概念的深化必须从概念的内涵和外延上作深入的分析。剖析概念的内涵就是抓住概念的本质特征。例如教学正方形的概念时,已学过平行四边形、矩形、菱形的概念,教学时可通过对正方形与矩形、菱形的概念作比较分析,发现正方形概念的内涵中包括矩形和菱形概念的内涵,从而在外延关系上得出正方形是特殊的矩形和菱形,而它们又都是特殊的平行四边形。从对正方形概念的教学,转向对平行四边形、矩形、菱形和正方形之间的区别及其联系的分析,进而把平行四边形的知识系统化了。教学中注意引导学生从概念的内涵和外延上加以区别,找出它们的异同点,不仅有利于学生掌握数学概念,也有助于培养学生思维的广阔性,提高学生的辩证思维能力。
3.剖析变化,深化概念。数学概念都是从正面阐述,一些学生只从表面文字上理解,碰到具体的数学问题却难以做出正确的判断。所以在学生正面认识概念的基础上,可通过反例或变式从反面剖析数学概念,凸显隐蔽的本质要素,加深对概念理解的全面性。有些学生对概念的全面理解不可能一蹴而就,而是要经历“实践——认识——再实践——再认识”的过程,通过对后续知识的学习回过头来再对概念进行加深理解,遵循“循环反复,螺旋上升”的学习原则。
三、注重概念的运用,升华概念
例如,对一次函数概念的掌握,可通过下列练习:
①如果y=(m+3)x-5是关于x的一次函数,则m=()。
②如果y=(m+3)x-5是关于x的一次函数,则m=()。
③如果y=(m+3)x+4x-5是关于x的一次函数,则m=()。
学习数学概念的目的,就是用于实践,因此要让学生通过实际操作去掌握概念、升华概念。概念的获得是由个别到一般,概念的应用则是从一般到个别。学生掌握概念不是静止的,而是主动在头脑中进行积极思维的过程,它不仅能使已有知识再一次形象化、具体化,而且能使学生对概念的理解更全面、更深刻。
四、利用先进教学手段,使抽象概念具体化
有些数学概念对学生来说抽象难懂,是教学中的难点。而利用多媒体计算机的优势,使教学的表现形式更加形象生动,既有利于提高学生学习的积极性,又充分揭示了数学概念的形成与发展。例如学习两圆的位置关系时,通过多媒体的演示,让学生对抽象的概念有了更直观的体验与认识。
数学概念教学对整个数学教学起着至关重要的作用,学生透彻牢固地掌握概念是提高教学质量的关键。在平时的概念教学中应尝试运用不同的教学方法,揭示概念的形成与发展,做好概念的巩固和应用,完善学生的认知结构,发展学生的思维能力,使不同的人在数学上得到不同的发展。

⑥ 简答题:如何进行数学概念的教学

教学蹦来就是一个繁杂的过程,哪里能答得简啊,如果要简单的话就四字:认真负责。我不教数学,但找了篇相关的文章;参参考给你。嘿嘿~~很长的;参考里的网站有很多教学论文去看看吧。
所谓数学概念,就是事物在数量关系和空间形式方面的本质属性,是人们通过实践,从数学所研究的对象的许多属性中,抽出其本质属性概括而形成的。就是指那些数学名词和术语。(在小学数学中反映数和形本质属性的数字、图形、符号、名词术语和定义、法则等都是数学概念。)
数学概念是进行数学推理、判断的依据,是建立数学定理、法则、公式的基础,也是形成数学思想方法的出发点。因此学好数学的基础关键是数学概念的学习,数学概念教学是数学教学是一个重要的组成部分。

一、数学概念的意义和定义方式

数学概念形成是从大量的实际例子出发,经过比较、分类从中找出一类事物的本质属性,然后再通过具体的例子对所发现的属性进行检验与修正,最后通过概括得到定义并用符号表达出来。实际上应包含两层含义:其一,数学概念代表的是一类对象,而不是个别的事物。例如"三角形"可用符号"△"来表示。这时凡是像"△"这样具有三个角和三条边的图形,则不论大小,统称为三角形,也就是说三角形的概念,就是指所有的三角形:等边的、等腰的、不等边的、直角的、锐角的、钝角......;其二,数学概念反映的是一类对象的本质属性,即该类对象的内在的、固有的属性,而不是那些表面的非本质的属性。例如,"圆"这个概念,它反映的是"平面内到一个定点的距离等于定长的点的集",我们根据这些属性,就能把"圆"和其他概念区分开。
我们把某一概念反映的所有对象的共同本质属性的总和叫做这个概念的内涵,把适合于这个概念的所有对象的范围称为这个概念的外延。通常说,给概念下定义,就是提示内涵或外延。一般说,定义数学概念有以下几种方式:
1.约定式定义
由于数学自身发展的需要,有时也通过规定给术语以特定的意义。如"不等于零的数的零次幂等于1",规定了零指数幂的意义,但要注意,约定式不能随心所欲,必须符合客观规律。
2.描述性定义
数学是一门严谨的科学,每个新概念总要用一些已知的概念来定义,而这些用于定义的已知概念又必须用另一些已知的概念来刻画,从而构成了一个概念的系列。在概念的系列中,是不允许有循环的。因此总有些概念是不能用别的概念来定义。这样的概念,叫做数学中的基本概念,又称为"原名"(或不定义概念、原始概念),它们的意义只能借助于其他术语和它们各自的特征予以形象地描述。如:几何中的点、直线、平面,代数中的集合、元素等。
3.构造式定义
这种定义是通过概念本身发生、形成过程的描述来给出的。如椭圆的定义"平面内与两个定点的距离的和等于定长的点的规迹叫做椭圆"。
4.属加种差定义
如果某一概念从属于另一个概念,则后者叫做前者的属概念,而前者叫做后者的种概念。如实数是有理数的属概念,而有理数是实数的种概念。
在同一个属概念下,各个概念所含属性的差别叫种差。如对于四边形这个属概念,平行四边形和梯形都是它的种概念,它们的种差是:"两组对边分别平行"和"一组对边平行,另一组对边不平行"。
用属加种差来定义概念,"就是把某一概念放在另一更广泛的概念里"来刻画它的意义,通常的方法是用邻近的属加种差来进行表述。如:平行四边形的定义,它的邻近的属概念是四边形,种差是两组对边分别平行,因而平行四边形的定义表述成"两组对边分别平行的四边形叫做平行四边形"。
另外,在教材里,还会遇到一些通过揭示概念的外延的方式给概念下定。如实数的定义:"有理数和无理数统称为实数"。
最后,还需声明:定义是数学概念的方式,以上分析是相对的、不严格的。例如,"异面直线所成角"定义,我们既可以认为它是约定式的,即规定"把经过空间任意一点所作的两条异面直线的平行线所成的锐角或直角叫做异面直线所成的角",也可以把它理解为发生式的:即通过取点、作平行线构成两对对顶角,把其中的锐角或直角叫做异面直线所成的角。总之,我们理解定义并不在于区分它是属于哪种定义方式,而是要明确概念的外延与内涵,然后应用它们去解决问题。

二、怎样进行数学概念教学

对数学概念,即使是那些原始概念,都不能望文生义。在教学中,既要把握它的内涵,这是掌握概念的基础;又要了解它的外延,这样才有利于对概念的理解和扩展;同时,对于概念中的各项规定、各种条件,都有要逐一认识,综合理解,从而印象更深,掌握更牢。
一般来说,围绕一个数学概念,应当力求清楚下列各个方面的问题:
①揭示本质属性。这个概念讨论的对象是什么,有何背景?此概念中有哪些规定和条件?它们与过去学过的知识有什么联系?这些规定和条件的确切含义又是什么?
给出概念的定义、名称和符号,揭示概念的本质属性。例如学习二次函数的概念,先学习它的定义:"y=ax2+bx+c(a、b、c、是常数。a≠0)那么y叫做x的二次函数"。又如,一位教师教学"长方体和正方体的认识"时,在指导学生给不同形体的实物分类引入"长方体"和"正方体"的概念后,及时引导学生先把"长方体"或"正方体"的各个面描在纸上,并仔细观察描出的各个面有什么特点,再认识什么叫"棱",什么叫"顶点",然后,指导学生分组填好领料单,根据领料单领取"顶点"和"棱",制作"长方体"或"正方体"的模型,边观察边讨论长方体与正方体的顶点和棱有什么特点,最后指导学生自己归纳、概括出"长方体"和"正方体"的特征,从而使学生充分了解"长方体"和"正方体"这两个概念的内涵和外延。
②讨论反例与特例。对概念进行特殊的分类,讨论各种特例,突出概念的本质属性。例如二次函数的特例是:y=ax2,y=ax2+c,y=ax2+bx,等等。
③新旧知识联系。此概念中有哪些规定和条件?它们与过去学过的知识有什么联系?使新概念与原有认知结构中有关观念建立联系,把新概念纳入到相应的概念体系中,同化新概念。例如把二次函数和一次函数、函数等联系起来,把它纳入函数概念的体系中。
④实例确认。辨认正例和反例,确认新概念的本质属性,使新概念与原有认知结构中有关概念精确分化。例如举出y=2x+3,y=3x2-x+5,y=-5x2-6等让学生辨认。
⑤具体运用。根据概念中的条件和规定,能够归纳出哪些基本性质?这些性质在应用中有什么作用?通过各种形式运用概念,加深对新概念的理解,使有关概念融会贯通成整体结构。
以上,我们只是介绍了概念教学过程的一般模式。把这个全过程可归结为三个阶段:
(一)引进概念途径
数学概念本身是抽象的,所以,新概念的引入,一定要坚持从学生的认识水平出发,要密切联系生产、生活实际。不同的概念的引进方法也不尽相同。对于一些原始概念和一些比较抽象的概念,教师应通过一定数量的感性材料来引入,要密切联系生活实际,使学生"看得见,摸得着"。引用实例时一定要抓住概念的本特征,要着力于揭示概念的真实含义。如"平面"的概念,可让学生观察生活中一些如桌面、平静的水面等,通过自己的探索和与同学们的交流得出结论。但是,教师一定要想办法让学生自己得到"无限延伸性和没有厚度"的本质特征。
(二)形成概念的方法
认识一个特殊的心理过程,由于每个学生之间存在一些差异,那么完成这个过程所需的时间也不一定相同。但是就认识过程而言,却不能跳跃。教学中,引入概念、并使学生初步把握了概念的定义以后,还不等于形成了概念,还必须有一个去粗取精、去伪存真、由此及彼、由表及里的改造、制造,必须在感性认识的基础上对概念作辩证的分析,用不同的方式进一步提示不同概念的本质属性。

1.在掌握了概念的本质属性之后,要引导学生作一些练习。例如,引入分解因式的概念后,可选下列一类练习让学生回答。
下列由左到右的变形,哪些是属于分解因式?哪些不是?为什么?
①(x+2)(x-2)=x2-4;
②(a2-9)=(a+3)(a-3);
③a3-9a=a(a2-9);
④x2-y2+1=(x+y)(x-y)+1;
⑤x2y+x=x2(y+1)
通过回答问题,特别是说明理由,可以初步培养学生运用概念作简单判断的能力。同时,每做一次判断,概念的本质属性就会在大脑里重现一次。因而,对于促进概念的形成是行之有效的。
2.通过变式或图形,深化对概念的理解。又如学习梯形这个概念时,可提供如下图形让学生观察:
这里,要注意三点:第一,所提供的感性材料(梯形)要足量,不可太少,也没有必要太多。太少不利于学生从中悟出规律,形成表象;太多会造成时间和精力上的浪费。第二,要引导学生对每一个材料加以分析和综合。第
三,要注意变式,全部材料要能反映出本要领的全部本质属性。
3.抓住概念之间的内在联系,通过新旧概念的对比,形成正确的概念。又如教学约数和倍数的概念时,可从"整除"这一概念入手,引出概念。
(三)概念的发展
学生掌握某一概念后,并不等于概念教学的结束,要用发展的眼光教概念。
1.不失时机地扩展延伸概念的含义。一个概念总是嵌在一些概念的群体之中。它们之间有纵横交错的内在联系,必须揭示清楚。如学习比的意义之后,就要及时地把"比"、"分数"、"除法"三者联系在一起,找出三者的联系和区别后,使学生居高临下,在一个广阔的背景下审视"比"这个概念,加深对概念的理解。
2.在一定的阶段形成一定的认识。抽象概念不要超越教材要求,否则会超越学生的承受能力。如一年级学习加法,只让学生认识到,加法表示"合并在一起","把两个数合并在一起"要用加法即可,而不能告诉学生确切的定义:"把两个数合并成一个数的运算,叫做加法"。
总之,提高中小学数学概念教学的水平,在概念教学实践中,教师要有意识地训练学生的数学思维方式、品质、能力和方法。加深学生对于数学概念的理解,是使学生融会贯通地掌握数学知识、增强能力的前提和关键,是把知识学好学活的必由之路。

⑦ 如何进行高中数学概念教学

1.在引入新概念时,把相关的旧概念联系起来,确立信任学生的观念,大胆放手让学生把某种情境用数学方法加以表征;在形成概念时,留给学生充足的思维空间,多角度、全方位地提出有价值的问题,让学生思考;指导学生自主地建构新概念.在辨识概念时,鼓励学生质疑.从学生的角度看,学贵有疑是学习进步的标志,也是创新的开始.
2.在学习数学定理、公式、方法时,离不开对命题的证明,应当改变传统的分为“展示定理、推证定理、应用定理”简单三步的模式,而结合实际情况,在证明命题前为学生创设认知冲突的疑惑情境.经过一段训练后,学生便能清楚什么是数学证明,什么不是.并且知道数学证明的价值及其局限性.
3.所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法.数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识.而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论.如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度.这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明.
4.教师可利用现代化的多媒体教学手段.可能的话,教学可以自编电脑课件,借助电脑来生动形象地展示所教内容.如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示.
我想要做到上述几个方面,必须改变传统的单一的“传授——接受”的教学模式,要留给学生思维的空间,同时要鼓励学生提出不同的想法和问题,提倡课堂师生的交流和学生与学生间的交流,因为交流可令学生积极投入和充分参与课堂教学活动.通过交流,不断进行教学信息的交换、反馈、反思,可修正思维策略,概括和总结数学思想方法.在交流中,作为老师耐心倾听学生提出的问题,并从中捕捉有价值的问题,展开课堂讨论,并适时作出恰当的评价,使班集体成为一个学习的共同体,共同分享学习的成果.

⑧ 如何进行小学数学概念教学

————论如何在小学数学教学中用好概念数学
现在很多小学生对学习数学的积极性不高,缺乏学习兴趣,认为数学特别难学。我们只要认真分析,就不难发现,主要是学生对一些数学概念没有搞清楚。如:12的最大约数与最小倍数是相等的。学生却判断是错误的,本题涉及 “因数”、一个“自然数”的因数是“有限的”,最小的是1,最大的是它本身。“倍数”、一个自然数的倍数是“无限的”,最小的是它本身,最大的没有。还有“相等”。学生出现错误,说明学生对数学概念没有理解掌握好。数学概念是“双基”(即基础知识和基本技能)教学的核心内容;是基础知识的起点;是逻辑推理的依据;是正确、合理、迅速运算的保证。学生正确、清晰、完整地掌握数学概念,是掌握数学知识的基础。如果学生对概念不明确,也会影响学生的学习兴趣和学习效果。如果不懂什么是“分数”和“分数单位”,就很难理解分数四则运算法则的算理,就会直接影响分数四则计算能力的提高。正确、迅速、合理、灵活的计算能力只有在概念清楚的基础上,掌握计算法则,经过适当练习才能形成。学生概念清楚了,才能进行分析推理;逻辑思维能力和解决问题的能力才能不断提高。因此,在教学中如何使学生形成概念,正确地掌握和运用概念是极为重要的。数学教学过程,就是“概念的教学”。一个数学教师,要把概念教学放到突出地位。小学数学中的一些概念,对小学生来说,由于年龄小,知识不多,生活经验不足,抽象思维能力差,理解起来有一定的困难。因此教师在有关概念的教学过程中,一定要从小学生年龄实际出发,这样才会收到好的教学效果。
一、教学中让学生理解数学概念
1.直观形象地引入概念
数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。如在教平均数应用题时,我利用铅笔做教具,重温“平均分”的概念。我用9个同样大的小木块摆出三堆,第一堆1块,第二堆2块,第三堆6块,问:“每堆一样多吗?哪堆多?哪堆少?”学生都能正确回答。这时,我又把这三堆木块混到一起,重新平均分三份,每份都是3块,告诉学生“3”这个新得到的数,是这三堆木块的“平均数”。我再演示一遍,要求学生仔细看,用心想:“平均数”是怎样得到的。学生看我把原来的三堆合并起来,变成一堆,再把这堆木块分做3份,每堆正好3块。这个演示过程,既揭示了“平均数”的概念,又有意识地渗透“总数量÷总份数=平均数”的计算方法。然后,又把木块按原来的样子1块,2块、6块地摆好,让学生观察,平均数“3”与原来的数比较大小。学生说,平均数3比原来大的数小,比原来小的数大,这样,学生就形象地理解了“求平均数”这一概念的本质特征。
2.运用旧知识引出新概念
数学中的有些概念,往往难以直观表述。如比例尺、循环小数等,但它们与旧知识都有内在联系。我就充分运用旧知识来引出新概念。在备课时要分析这个新概念有哪些旧知识与它有内在的联系。利用学生已掌握的旧知识讲授新概念,学生是容易接受的。苏霍姆林斯基说:“教给学生能借助已有的知识去获取知识,这是最高的教学技巧之所在。”从心理学来分析,无恐惧心理,学生容易活跃;无畏难情绪,易于启发思维;旧知识记忆好,容易受鼓舞;所以运用旧知识引出新概念教学效果好。例如从求出几个数各自的“倍数”从而引出“公倍数”、“最小公倍数”等概念。总之,把已有的知识作为学习新知识的基础,以旧带新,再化新为旧,如此循环往复,既促使学生明确了概念,又掌握了新旧概念间的联系。
3.通过实践认识事物本质、形成概念
常言说,实践出真知,手是脑的老师。学生通过演示学具,可以理解一些难以讲解的概念。如一年级小学生初学数的大小比较。是用小鸡小鸭学具,一一对比。如一只小鸡对一只小鸭,第二只小鸡对第二只小鸭,……直到第六只小鸡没有小鸭对比了,就叫小鸡比小鸭多1只。又如二年级小学生学习“同样多”这个概念也是用学具红花和黄花,学生先摆5朵红花、再摆和红花一样多的5朵黄花,这样就把“同样多”这个数学概念,通过演示(手),思维(脑),形成概念,符合实践、认识,再实践、再认识的规律。这比老师演示、学生看,老师讲解、学生听效果好,印象深、记忆牢。
4、从具体到抽象,揭示概念的本质
在教学中既要注意适应学生以形象思维为主的特点,也要注意培养他们的抽象思维能力。在概念教学中,要善于为学生创造条件,引导他们通过观察、思考、探求概念的含义,沿着由感性认识到理性认识的认知过程去掌握概念。这样,可以培养学生的逻辑思维能力。如圆周率这个概念比较抽象。一般教师都是让学生通过动手操作认识圆的周长与直径的关系,学生通过观察、思考,分析,很快就发现不管圆的大小如何,每个圆的周长都是直径的3倍多一点。教师指出:“这个倍数是个固定的数,数学上叫做“圆周率”。这样,引导学生把大量感性材料,加以分析综合,抽象概括抛弃事物非本质东西(如圆的大小,纸板的颜色,测量用的单位等)抓住事物的本质特征(不论圆的大小,周长总是直径的3倍多一点)。形成了概念。
5、用“变式”引导学生理解概念的本质
在学生初步掌握了概念之后,我经常变换概念的叙述方法,让学生从各个侧面来理解概念。概念的表述方式可以是多种多样的。如质数,可以说是“一个自然数除了1和它本身,不再有别的因数,这个数叫做质数。”有时也说成“仅仅是1和它本身两个因数的倍数的数”。学生对各种不同的叙述都能理解,就说明他们对概念的理解是透彻的,是灵活的,不是死背硬记的。有时可以变概念的非本质特征,让学生来辨析,加深他们对本质特征的理解。
6、对近似的概念加以对比
在小学数学中,有些概念的含义接近,但本质属性有区别。例如:数位与位数、体积与容积,减少与减少到等等相对应概念,存在许多共同点与内在联系。对这类概念,学生常常容易混淆,必须把它们加以比较,避免互相干扰。比较,主要是找出它们的相同点和不同点,这就要对进行比较的两个概念加以分析,看各有哪些本质特点。然后把它们的共同点和不同点分别找出来,使学生既看到进行比较对象的内在联系,又看到它们的区别。这样,学的概念就会更加明确。对近似的概念经常引导学生进行比较和区分,既能培养学生对易混概念自觉地进行比较的习惯,也能提高学生理解概念的能力。多年来教学实践的体会:重视培养学生的比较思想有几点好处:(1)有利于培养学生思维的逻辑性。(2)有利于提高学生的分析问题的能力。(3)有利于培养学生系统化的思维方式。
5、教师要帮助学生总结归纳出概念的含义
教学中学生的主体地位是必要的,但教师在教学的全过程中的主导地位也不能忽视。教师应发挥好主导作用。教师与学生的主、客体地位是相互依存,在一定条件下又相互转化。在概念教学中,教师要善于为学生创造条件,让学生沿着观察、思维、理解、表达的过程,由感性到理性的过程,由具体到抽象的过程去掌握概念。这样极易调动学生的积极性、主动性,也可以教会学生去发现真理。比如我教质数,合数两个概念。我先板书几个数:1、2、3、4、5、6、8、9、11、12,让同学分别写出每个数的因数来。为了便于学生观察,有意识地做如下的排列,学生写出下列答案:
1——1 2——1、2 6——1、2、3、6
3——1、3 4——1、2、4
5——1、5 8——1、2、4、8
11——1、11 9——1、3、9
12——1、2、3、4、6、12
订正后,让学生仔细观察,找自然数的因数规律。学生观察后发现了规律。有的说有三种规律,有的则认为四种情况。我表扬同学观察分析得好。是三种规律。于是又启发他们看是哪三种?①一个自然数只有一个因数;②一个自然数有两个因数;③一个自然数有三个以上因数。在这个情况下,我再次启发:一个因数的是什么样的数?两个的是什么样的?三个以上又是什么样的因数?学生则发现一个的只有1;两个的则有1还有本身;三个以上的则有1、自己本身、还有其它的因数。最后老师一一肯定,并由学生看书后总结出质数、合数概念,这时学生很受鼓舞,认为自己发现了真理。对质数、合数的概念印象极为深刻永不忘记。我又有意识地让学生研究“1”到底算哪类?学生沉默了,我说:“从书上找找是怎么说的?知道的就发言”。通过学生的口,说出“1”既不是质数,也不是合数。我问:“为什么”?学生答:因为“1”的因数只占一条,算1就没有本身,算本身又没有“1”,这样可比老师直接告诉、或叮咛他们注意主动。让学生在教师的帮助下,把大量感性材料经过分析综合,抽象概括。抛弃事物和现象的非本质的东西,抓住事物和现象的本质特征形成概念。因为是学生付出了脑力劳动而获取得到的,所以容易理解,记忆也牢固。
二有效巩固概念
教学中不仅要求学生理解概念,而且还要使学生熟记并灵活地运用概念。我认为概念的记忆与应用是相辅相成的。因此在教学中,加强练习,及时复习并做归纳整理,对巩固概念具有特殊意义。
1、学过的概念要归纳整理才能系统巩固
学习一个阶段以后,引导学生把学过的概念进行归类整理,明确概念间的联系与区别,从而使学生掌握完整的概念体系。如学生学了“比”的全部知识后,我帮助他们归纳整理了什么叫比;比和除法、分数的关系;比的基本性质,利用比的基本性质,可以化简比;这一系列知识复习清楚之后,才能很好地解决求比例尺三种类型题和比例分配的实际问题。只有把比的意义理解得一清二楚,才能继续学习比例。表示两个比相等的式子叫做比例。这样做,就构成了一个概念体系,既便于理解,又便于记忆。概念学得扎扎实实,应用概念才会顺利解决实际问题。
2、通过实际应用,巩固概念
学习的目的是为了解决实际问题。而通过解决实际问题,势必加深对基本概念的理解。如学生学了小数的意义之后,我就让学生利用课外时间,到商店了解几种商品的价钱,写在作业本上,第二天让他们在课上向大家汇报。通过了解的过程,非常自然地对小数的意义,读、写法得以运用与理解。又如学了各种平面图形后,我让学生回家后,观察家里那些地方有这些平面图形。通过这种形式的作业,学生感到新鲜,有趣。这不仅巩固了所学概念,还提高了学生运用数学概念解决实际问题的能力。
3、综合运用概念,不仅巩固概念,而且检验概念的理解情况。
在学生形成正确的数学概念之后,进一步设计各种不同形式的概念练习题,让学生综合运用、灵活思考、达到巩固概念的目的,这也是培养检查学生判断能力的一种良好的练习形式。这种题目灵活,灵巧,能考察多方面的数学知识,是近些年来巩固数学概念一种很好的练习内容。
练习概念性的习题,目的在于让学生综合运用,区分比较,深化理解概念。所安排的练习题,应有一定梯度和层次,按照概念的序,学生认识的序去考虑习题的序。要根据学生实际和教学的需要,采用多种形式和方法设计,借以激发学生钻研的兴趣,达到巩固概念的目的。尤其应组织好概念性习题的教学,引导学生共同分析判断。
多年来的教学实践,使我深刻地体会到:要想提高教学质量,教师用心讲好概念是非常重要的,既是落实双基的前提,又是使学生发展智力,培养能力的关键。但这也仅仅是学习数学的一个起步,更重要的是在学生形成概念之后,要善于为学生创造条件,使学生经常地运用概念,才能有更大的飞跃。只有学生会运用所掌握的概念,才能更深刻地理解概念,从而更好地掌握新的数学知识。只有这样,培养能力,发展智力才会有坚实的基础

⑨ 新课改后怎样进行数学概念的教学

新课标下如何进行数学概念教学 随着新课程标准基本理念的实 施,传统的数学课堂概念教学模式已 经不能适应新课程的需要,数学课堂 概念教学模式必须作出相应的转变。 数学概念教学过程是在教师指导下, 调动学生认知结构中的已有感性经验 和知识,去感知理解材料,经过思维 加工产生认识飞跃(包括概念转变), 最后组织成完整的概念图式的过程。 为了使学生掌握概念、发展认识能 力,必须扎扎实实地处理好每一个环 节。 一.数学概念教学的现状: 数学教学历来都十分重视数学概 念的教学,但由于教学理念的不同造 成了概念教学着重点各有不同,用新 的教学理念和现代教学论来审视传统 的数学概念教学,我们会发现有许多 成功和不足之处。 1,成功之处:传统的概念教学 着重从数学概念的内容出发,着力从 两方面讲解和剖析数学概念:一讲清 数学概念的内涵,即它们的数学内容 和意义;二强调数学概念的应用,即 它们的适用条件和范围;这样的教学 严谨扎实,有利于学生在短时间内学 习人类几百年甚至几千年积累的大量 知识,形成学生自己的知识结构和技 能技巧,进而运用知识。 2,不足之处:对概念形成过程 的教学重视不够,直接扼杀了学生的 探究创造过程,形成机械记忆运用的 模式。老师注重的是知识的历史传 承,压缩了概念形成过程的教学,新 授课教学“重结果”的情况非常严重, 很多教师在引入概念时没有让学生对 其必要性获得足够的感性认识而是直 接给出数学概念,致使一部分学生只 是死记概念的内容而没有真正理解概 念的实质,概念在他们的头脑中成为 空中楼阁。题海战术成为他们学习数 学的“捷径”,靠课后的练习再来探索 概念的本质,有点本末倒置。 二.新课标下数学概念教学的建 议 1概念教学应由“知识型”向“过程 型”转变 任何一个概念知识的学习几乎都 遵循这样的环节:概念引入------概念 形成---概念巩固运用。传统的概念教 学将获得知识结论教学作为主要目 标,忽视了学生在知识形成过程中的 重要作用,使学生的学习行为更多的 表现为机械记忆,而不是理性分析。 根据构建主义理论学习应是认知主休 的内部心理过程,学生是信息加工主 休,数学新课标中提出了“过程与方 法”这一教学目标维度,在这一维度 下,新课程对学生的学习要求从原来 的“重知识”转变为“重过程”。 2概念教学应有“讲授型”向“探索 型”转变 传统概念教学注重讲授,把课本 上一些需要学习的概念稍加分析,然 后无论学生是否理解先背下再说。以 前教师经常说的是:先记下然后通过 做题慢慢理解。传统概念教学对于教 学的重点不清,比如一节概念课45分 钟教师只用20%的时

⑩ 如何抓好"数学概念"的教学

如何抓好"数学概念"的教学
如何根据学生实际情况,让学生切实掌握好数学概念,从而为以后教学打好基础,这是教学中一个大问题。因为正确理解数学概念,是掌握数学基础知识的前提。概念一般说来比较抽象,但是又很普遍,哪里有思维活动,哪里就会有概念的出现和运用;哪里要用到知识,那里就要有用大大小小的概念来表达。可以说概念是思维的细胞,是表达知识的形式。所以在教学过程中学生牢固掌握概念是十分重要的。有些学生对于题目不能灵活运用,归根结谛还是没有真正掌握好概念。

帮助学生正确掌握好教学中出现的概念,要注意几点:
一、注重概念、公式的引入
一个好的开端是成功的一半。精心设计好一个开场白,可以立即激发起学生学习积极性和求知欲望,师生共同投入对新知识的研究和探索中去,从而使授课得以很好地进行下去。对于这样的引入,一般可以从具体实例出发,思考、探索,引出问题,然后想办法加以解决。就象如何根据汽车刹车后留下的刹车痕迹来判断汽车车速这个问题,从这样一个具体问题出发,学生思考,如何才能由刹车痕迹长短来判断司机是否超速,找书本,从书上找到计算方法,通过计算,解决这个问题,从而也就引出了一元二次不等式的解法。这样的教学,既能使学生牢固掌握好这个知识点,又能从中进行交通安全教育。

又如在讲授“复数概念扩展”一节时,就先让学生解一些学过的方程,从中了解到数如何从自然数集逐渐扩展到现在的实数集。然后举出方程,让学生思考如何解决。对于这个用以前学过的知识无法解决的问题,就需要用新的工具去解决它,这样就引出了虚数单位i,也就逐步把实数集扩展到了复数集。因为有了前面的经验,学生对于数集的扩展也就比较容易的接受了,虚数概念也就变得不难以理解了。

万事开头难。一节课的质量好坏,开始的引入起了很重要的作用,一节高水平的课,往往开始就是非常精彩的。
二、讲解概念,要抓住概念本质
对于概念课的教学,首先要让学生记住概念和公式的条件和结论是什么?是否可逆?它们的关系式是不是充要条件?其次,在学生掌握条件和结论以后,再具体讲解概念的内涵和外延,搞清概念间关系,对于一些比较容易混淆的概念可以做些比较,帮助理解其中的联系和区别,最后在掌握基本概念的基础上,再变化,再综合应用。在集合一章中,我就采用这一方法,把“子集”和“真子集”两概念放在一起加以比较,又把“交集”、“并集”和“补集”,三种集合运算联系起来,先从定义及表达式上反映它们区别,再在文字图上结合一些题目加以比较,使学生能更直观地看到集合间运算的关系,从感性认识上升到理性认识,从而掌握好这一知识点。

另外在讲授新概念时,还要经常把旧知识联系起来,温故而知新,从而对新概念的掌握有很大帮助,有利于知识的融会贯通。例如“反三角函数”一章的教学,就可以事先把前面学过的三角函数拿来,从三角函数的定义,解析式到图象和性质加以复习,并结合现在讲授的反三角函数的一些概念,对照比较,使学生对于整个三角学内容切实,全面的掌握。这样既重温了旧知识,又有利于新课的掌握,避免了前学后忘的弊病。

三、注重课后练习和反馈
最后在讲解了新概念以后,还要加强练习和反馈,一个新概念或一些新知识讲授下去以后,学生要有一个消化吸收的过程,这时就需要通过安排一些适当的训练加以反馈。这些练习可以分两步走:先是从基本练习出发,帮助学生熟悉、掌握好新概念,新知识,在基本内容掌握好以后,再根据班级学生实际情况,设计一些小转弯、小变化和小综合的题目,以便学生灵活运用知识去解决问题。

抓好概念教学是很重要的,它是各种教学环节中不可缺少的一环,而如何切实落实好概念教学,不仅是提高45分钟课堂教学效率,还要注重课前、课后的教学工作,对于出现的问题,产生的弊病,要及时加以纠正、解决,以便学生真正掌握好,理解好知识。

阅读全文

与如何进行数学概念教学相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:748
乙酸乙酯化学式怎么算 浏览:1413
沈阳初中的数学是什么版本的 浏览:1367
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:896
数学c什么意思是什么意思是什么 浏览:1424
中考初中地理如何补 浏览:1314
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1404
如何回答地理是什么 浏览:1038
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1495
二年级上册数学框框怎么填 浏览:1715
西安瑞禧生物科技有限公司怎么样 浏览:1014
武大的分析化学怎么样 浏览:1257
ige电化学发光偏高怎么办 浏览:1346
学而思初中英语和语文怎么样 浏览:1671
下列哪个水飞蓟素化学结构 浏览:1433
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1073