‘壹’ 初中数学教案
数学教学教案
勾股定理(二)
一、学习目标
1.会用勾股定理进行简单的计算。
2.树立数形结合的思想、分类讨论思想。
二、重点、难点
1.重点:勾股定理的简单计算。2.难点:勾股定理的灵活运用。
三、学习过程
1、勾股定理的具体内容是(用几何语言表示)
2、勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的知识和新知识综合运用,提高综合能力。
3、在Rt△ABC,∠C=90°
⑴已知a=b=5,求c。
⑵已知a=1,c=2, 求b。
⑶已知c=17,b=8, 求a。
⑷已知a:b=1:2,c=5, 求a。
⑸已知b=15,∠A=30°,求a,c。
4、已知:如图,等边△ABC的边长是6cm。
⑴求等边△ABC的高。
⑵求S△ABC。
四、练习
1.填空题
⑴在Rt△ABC,∠C=90°,a=8,b=15,则c= 。
⑵在Rt△ABC,∠B=90°,a=3,b=4,则c= 。
⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= 。
⑷如果c=10,a-b=2,则b= 。
⑸如果a、b、c是连续整数,则a+b+c= 。
⑹如果b=8,a:c=3:5,则c= 。
(7)一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。
(8)已知直角三角形的两边长分别为3cm和5cm,,则第三边长为 。
(9)已知等边三角形的边长为2cm,则它的高为 ,面积为 。
2.已知:如图,在△ABC中,∠C=60°,AB= ,AC=4,AD是BC边上的高,求BC的长。
3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。
4.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC, AB⊥AC,∠B=60°,CD=1cm,求BC的长。
‘贰’ 哪里可以下载新人教版初中数学教案
网络文库
‘叁’ 在那里可以找到初中数学的优秀教案
www.52new.com 挺不错的
‘肆’ 求初中数学教案
第五章 反比例函数
教材分析:
函数是在探索具体问题中数量关系和变化规律的基础上抽象出来的数学概念,是研究现实世界变化规律的重要内容和数学模型,学生曾在七年级下册和八年级上册学习过“变量之间的关系”和“一次函数”等内容,对函数已有了初步的认识,在此基础上讨论反比例函数可以进一步领悟函数的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,为后继学习二次函数等产生积极的影响。本节课通过对具体情境的分析,概括出反比例函数的表达形式,明确反比例函数的概念。通过例题和列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义。
学情分析:
1.已有的生活体验
2.对以前学过的函数、一次函数、正比例函数有关知识的初步理解。
教学目标:
(一)知识与技能
1.结合具体情境体会反比例函数的意义。
2.能根据已知条件确定反比例函数表达式。
(二)过程与方法
1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
(三)情感态度与价值观
结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.
教学重点:经历抽象反比例函数概念的过程,领会反比例函数的意义,理解它的概念.
教学难点:领会反比例函数的意义,理解反比例函数的概念.
教学方法:教师引导学生,小组合作、探究式进行归纳.
1、通过关注日常生活中所涉及的两个变量之间的相依关系,加深对函数关系的理解。
2、通过具体问题,讨论总结反比例函数的概念。
教具准备:多媒体课件
教学过程
(一)创设情境,引入新课
1、把一张一百元换成50元的人民币,可得几张?换成10元的人民币可得几张?依次换成5元,2元,1元的人民币,各可得几张?换得的张数y 与面值x之间有怎样的关系呢?请同学们填表:
换成的元数x(元) 50 20 10 5 2 1
换成的张数y(张)
提问:
1.你会用含有X的代数式表示Y吗?
2.当换成的元数X变化时,换成的张数Y会怎样变化呢?(从身边生活中体会数学,此情境源自生活。)
3.变量X是Y的函数吗?为什么?(回顾函数的相关知识)
2、还记得以往学习的函数吗?(回顾一次函数、正比例函数的表达式。)
与一次函数和正比例函数不同,我们今天要学习的函数是反比例函数。
(二)互动探究,学习新课
例1.我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,(1)请你用含有R的代数式表示I;(2)利用你写出的关系式完成下表:
R/Ω 20 40 60 80 100
I/A
学生填表完成,提出当R越来越大时,I是怎样变化的?当R越来越小呢?(3)变量I是R的函数吗?为什么?(体现数理学科知识的联系)
思考:舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.(学以致用)
例3.京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车完成全程所需的时间t(h)与行驶的平均速度V(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?(常见的行程问题中蕴含的函数关系)
(三)学生分组交流讨论
我们再看例子: 两个变量x和y的乘积等于-6,用函数关系式表示出来是 ,思考:变量x和y之间的关系是什么?
提出问题:①变量之间的关系具有什么特点?引导学生得出:两个变量的乘积等于非零常数.②如何给反比例函数下定义?
教师总结并和学生一起探索出反比例函数的概念:
一般地,如果两个变量x,y之间的关系可以表示成: (k为常数,K≠0)的形式,那么称y是x的反比例函数。
强调在理解概念时要注意:①常数K≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当 可写为 时注意x的指数为—1。④由定义不难看出,k可以从两个变量相对应的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。
(四)课堂练习:(巩固反比例函数的概念)
1:下列哪些式子表示y是x的反比例函数?为什么?并且说明K是多少?
(1) (2) (3) (4) (5) (6)
2. 当m为何值时,函数 是反比例函数?(熟悉 形式)
3、若 是反比例函数,则m、n的取值是( )
A、 B、 C、 D、
4、下列命题中,y与x成反比例关系的是( )
A.正方形的面积y与它的边长x B.矩形的面积为定值a,则矩形的长y与宽x
C.三角形的面积y与底边长x D.圆的面积y周长x
5. P144做一做1-3(实物展示:加深对反比例函数意义的理解)
6. 数学来源于生活,请同学在生活中找出类似的例子。(分组交流讨论,体会数学与生活的密切联系,并让学生树立模型化思想。)
(五)总结、提高。
今天通过生活中的例子,探索学习了反比例函数的概念,我们要掌握反比例函数是针对两种变化量,并且这两个变化的量可以写成 (k为常数,K≠0)同时要注意几点::①常数K≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当 可写为 时注意x的指数为—1。④由定义不难看出,k可以从两个变量相对应的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。
(六)布置作业:P145-1461、2、4
(七)板书设计:
反比例函数
1、定义:一般地,如果两个变量x,y之间的关系可以表示成: (k为常数,K≠0)的形式,那么称y是x的反比例函数。
2、注意:
①常数K≠0;
②自变量x不能为零(因为分母为0时,该式没意义);
③当 可写为 时注意x的指数为—1。
④确定了k,这个函数就确定了。
自
由
空
间
(供作教学过程演练用)
(八)、课后反思
‘伍’ 请问在哪里可以找到初中数学备课资料
莲山课件 教案,说客,评课,小学的中学的,都有,自己找吧。愿你成为一名优秀的教师!~! http://web.5ykj.com/List/List_280.htm
‘陆’ 那里可以找到初中数学所有的教案
到网络上查一下不就知道了啊
‘柒’ 初中数学教案怎么写
《三角形的内角和》教案
教学内容:教科书第137-138页,练习三十一的第12-15题。
教学目的:1.使学生知道三角形的内角和是180°,并能运用它进行求角的度数的计算。
2.通过让学生猜测并动手验证三角形内角和的过程,培养学生探究、解决问题的能力。
教具准备:课件
课前准备:1.每人用纸剪三个三角形:一个直角三角形、一个锐角三角形、一个钝角三角形,并找出每个三角形的三条边的中点,在中点处用笔点一个点,作上记号。
2.量出剪的三角形每个角的度数,并记在相应角上。
教学过程:
一.复习导入:
1. 导入谈话:前几节课我们学习了有关三角形的知识,谁能说一说什么是三角形?(由三条线段围成的图形叫做三角形)
2. 认识三角形的内角。
课件演示三条线段围成三角形的过程,师指课件:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角)。三角形有几个内角?(三个)
二.探究新知:
(一)三角形内角和的意义:
1.师出示两个直角三角板,问:这两个三角板是什么形状?(三角形)
我们量过这两个三角形的每个内角,谁能说出各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。
2.师指第1个三角形:谁来计算出这个三角形三个内角的总度数?
(生回答,师课件板书:(1)90°+60°+30°=180°)
师指上面算式:这个三角形三个内角的总度数是180°,三角形中三个内角的总度数叫做三角形的内角和,所以这个三角形的内角和就是180°。
(二)特殊三角形的内角和。
1.那么第2个三角形的内角和是多少度?
(生回答,师课件板书:(2)90°+45°+45°=180°)
我们还认识了等边三角形,那么等边三角形的内角和是多少度 ?
(生回答,师课件板书:(3)60°+60°60°=180°)
2.观察、发现、猜测:
(1)观察以上三个三角形的内角和,你有什么发现?(内角和都是180°)
(2)由此你想到什么?(是否所有三角形的内角和都是180°?)
师:那现在我们来猜测一下,认为所有三角形的内角和都是180°的请举手。认为所有三角形的内角和不一定都是180°的请举手。
师:对于这个问题,大家有两种猜测,那么究竟哪种意见是正确的呢?怎么办? (想办法证明)
(三)操作、验证
1.计算法证明:
(1)让学生拿出课前准备好的3个三角形纸片,分别把锐角三角形、直角三角形、钝角三角形的内角和计算出来,然后以4人小组为单位交流内角和的度数,看看有什么发现。
(2)指名汇报各组度量和计算内角和的结果(如果有实物投影仪,最好把生量、算的情况投出来更好)。
(3)观察:从大家量、算的结果中,你发现什么?
(4)归纳:大家算出的三角形内角和都等于或接近180°(有的大于180°,有的小于180°,但都很接近180°)
(5)进一步思考、讨论:
你认为以上计算结果,能否证明三角形的内角和就是180°?
生两种意见:一是能,计算结果不正好得180°的,是量、算度数时出现了点偏差,如果没有偏差,应该正好是180°;另一种是还不能,因为结果不都正好是180°,还不能使人信服,还需要进一步证明。
2.折叠法证明:
(1)师:刚才我们计算三角形的内角和都是先测量每个角的度数再相加的,而在量每个内角度数时,只要有一点偏差,内角和就有误差了,也就是不准确了。所以大家算出的三角形内角和的结果有差别,用这种方法证明也就不能很让人信服了。那么我们能不能不用量、算度数的方法,而是换一种方法,来证明三角形的内角和究竟是不是180°呢?请同学们拿出你剪的三角形,小组同学共同来研究、研究吧。
(2)生小组探究活动,师巡视过程中加入探究、指导(如生有困难,师可引导、提示:想一想,怎样可以把三角形的三个内角拼在一起?三个内角能拼成一个什么角?)
(3)生汇报验证三角形内角和。
a.验证直角三角形的内角和(如有实物投影,直接在实物投影上展示最好)。
方法如下 :图1、图2两种。
或
图1折法中三个角拼在一起组成了一个什么角?我们可以得出什么结论?
引导生归纳出:直角三角形的内角和是180°
图2折法能证明直角三角形内角和是180°吗?说说道理。
从图2折法我们还可以得出什么结论?
引导生归纳出:直角三角形中两个锐角的和是180°。
b.验证锐角三角形的内角和。
折法同上直角三角形的方法1。
你发现了什么?
归纳:锐角三角形的内角和也是180°。
c.验证钝角三角形的内角和。
让学生用同样的方法折一折,如下图所示:
引导学生归纳出:钝角三角形的内角和也是180°。
提问:刚才我们验证了直角三角形、锐角三角形和钝角三角形的内角和都是180°,那么,我们能不能说任何三角形的内角和都是180°呢?
引导学生明确:由于这三种三角形包括了所有的三角形,所以可以得出结论:任何三角形的内角和都等于180°。(板书:三角形的内角和是180°)。
(四)应用三角形内角和解决问题。
1.第138页的例题。
出示题目,让学生试做。
指名汇报怎样列式计算的。两种方法均可。
(1)∠3=180°-78°-44°=58°
(2)∠3=180°-(78°+44°)=58°
2.完成第138页的“做一做”的第2题,生独立完成,汇报时对第2种做法要说出根据并提出表扬:
(1)180°-90°-65°=25°或180°-(90°+65°)=25°
(2)90°-65°=25°
三.拓展、提高。
1.在一个等腰三角形中,一个底角是50°,求顶角的度数。
2.在一个等腰三角形中,一个顶角是50°,求一个底角的度数。
以上两题生独立完成,再指生汇报说怎样想的(有困难可小组交流)。
3.练习三十一的第16题。
小组讨论后汇报并说明根据:
(1) 长方形和正方形的内角和是:90°×4=360°
(2) 长方形和正方形的内角和是:180°×2=360°
其中第2种方法是:连接长方形、正方形一组对角顶点,把长方形、正方形分成两个三角形,两个三角形的内角和就是长方形或正方形的内角和。
4. 练习三十一的第17题。
生小组探究试做,汇报时说理由:
四边形内角和:180°×2=360°
六边形内角和:180°×4=720°
四.课堂小结。
板书设计:
三角形的内角和
(2)验证锐角三角形的内角和。
∠1+∠2+∠3=?
(3)验证钝角三角形的内角和。
(1)验证直角三角形的内角和。
三角形的内角和是180°
附:评价表。
评价学生数学学习的方法是多样的,每种评价方式都有自己的特点,评价是应结合评价内容与学生学习特点合理进行选择。
我在上了《三角形的内角和》后,设计了这样的一组活动评价表:
表一(自评)
评价内容
优秀
良好
一般
猜想、验证的探究能力
对三角形内角和的理解
独立解答习题的能力
表二(小组互评)
评价内容
优秀
良好
一般
提出问题的能力
独立探究能力
发言的积极性和条理性
小组合作学习的表现
这样设计的自评与互评表,不但评知识的掌握,而且评学习的态度、学习的能力等。通过评价,使学生获得了成功的体验,增强了自信心,为自主探究习惯的养成奠定了基础。
‘捌’ 在哪里可以找到初中数学教案,谢谢
自己问别人借网络地图
本数据来源于网络地图,最终结果以网络地图最新数据为准。
‘玖’ 在哪里找初中数学教案
淘宝内有系统的,编辑精美的word初中培训教案