1. 怎样培养小学生的数学思想
如何培养小学生的数学思想
小学数学解题中会涉及到许多数学思想方法,重视对这些数学思想方法的渗透和运用,能增加学生的学习兴趣,启迪学生的思维,发展学生的数学智能,培养学生的创新意识和实践能力;有利于学生领悟数学的真谛,学会数学地思考问题,掌握解决数学问题的途径、手段和策略,提高学生的数学素养及分析问题和解决问题的能力。
一、转化的思想方法
转化是解决数学问题常用的思想方法。转化就是将有待解决或未解决的问题,通过某种转化手段,归结为另一个相对比较容易解决的或者已经有解决程序的问题,以求得问题的解答。小学数学解题中,遇到一些数量关系复杂、隐蔽而难以解决的问题时,可通过转化,使生疏的问题熟悉化、抽象的问题具体化、复杂的问题简单化,从而顺利解决问题。
二、数形结合的思想方法
数形结合思想方法,就是把问题的数量关系和空间形式结合起来去分析问题、解决问题,其实质是将抽象的数学语言与直观的图形结合起来,使得抽象的数学概念或复杂的数量关系直观化、形象化、简单化。小学数学解题中,有些问题数量关系复杂,用一般的思考方法难以发现解题线索,可以把题中的条件和问题用图形直观形象地表示出来,然后“按图索骥”,便能很快发现解题的线索,使问题迅速得到解决。
三、假设的思想方法
假设是一种常用的推测性的数学思想方法。小学数学解题中,有些问题数量关系比较隐蔽,难以建立数量之间的联系,或数量关系抽象,无从下手。可以根据问题的具体情况合理假设,由此得出一些关系和结论,产生差异与矛盾,通过分析与思考,找出差异的原因,使复杂问题简单化,数量关系明朗化,从而达到解决问题的目的。
四、整体的思想方法
整体的思想方法就是从整体观点出发,有意识地放大思考问题的“视角”, 纵观全局,通过研究问题的整体形式、整体结构、整体特征,并对其进行调节和转化,从而使问题得到解决。小学数学解题中,有些问题从每个部分或条件去思考不易解决时,可以把问题的各个部分或条件作为一个整体,全面考虑,往往能收到意想不到的效果,使繁难的问题得到迅速巧妙的解决。
2. 怎样培养小学生的数学思想
数学思想是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。
小学数学教材中渗透的数学思想方法主要有:数形结合、集合、对应、分类、函数、极限、化归、归纳、符号化、数学建模、统计、假设、代换、比较、可逆等思想方法。教学中,要明确渗透数学思想方法的意义,认识数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。
下面我就如何向学生渗透这些数学思想方法分别举例说明一下。
一、数形结合思想方法
1.先形后数。一年级的小学生刚开始学习数学,是从具体的物体开始认数,从具体形象到抽象。
2.先数后形。如教学排队问题:一年级小同学排队做操,从前往后数,小明排第5,从后往前,小明排第4,这一对共有几人?小同学很容易地将4与5相加,得出错误的结果。如果让学生用画图的方法解答,用“△”代表排队的小朋友,这道题很容易解决。
二、对应思想
例如,求一个数比另一个数多(少)几的应用题的数量关系。对二年级学生来说较为抽象。我是这样设计的:苹果有8个,梨有6个,苹果比梨多几个?学生通过用○、△等学具代替苹果、梨摆一摆,或用画一画的方法得到了解决。
再如,数轴上的点与实数之间的一一对应等把抽象内容的数量关系视觉化、具体化、形象化,化深奥为浅显。同时,鼓励了学生的创新,使学生乐于参与这样的数学活动。
三、分类思想
分类是根据教学对象的本质属性的异同按某种标准,将其划分为不同种类,即根据教学对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类进行分析研究。分类是数学发现的重要手段,在教学中,如果对学过的知识恰当地进行分类,就可以使大量纷繁的知识具有条理性。一般分类时要求满足互斥,无遗漏、最简便的原则。如整数以能否被2整除为例,可分为奇数和偶数;若以自然数的约数个数来分类,则可分为质数、合数和1。几何图形中的分类更常见,如学习“角的分类”时,涉及到许多概念,而这些概念之间的关系渗透着量变到质变的规律。其中几种角是按照度数的大小,从量变到质变来分类的,由此推理到在三角形中以最大一个角大于、等于和小于90°为分类标准,可分为钝角三角形、直角三角形和锐角三角形。而三角形以边的长短关系为分类标准,又可分为不等边三角形和等边三角形,等边三角形又可分为正三角形和等腰三角形。通过分类,建构了知识网络,不同的分类标准会有不同的分类结果,从而产生新的数学概念和数学知识的结构。
四、化归思想
化归是数学中最普遍使用的一种思想方法。它是通过变形把要解决的问题,化归为某个已经解决的问题,从而求得原问题的解决。其基本思想是:将待解决的问题甲,通过某种转化过程,归结为一个已经解决或者比较容易解决的问题乙,然后通过乙问题的解答返回去求得原问题甲的解答。这种化归思想不同于一般所讲的“转化”、“转换”,它具有不可逆转的单向性。它的基本形式有:化难为易,化生为熟,化繁为简,化整为零,化曲为直等。在小学数学中蕴藏着各种可运用化归的方法进行解答的内容,让学生初步学会化归的思想方法。如:教学圆面积的计算方法,这里要推导出圆面积公式,在推导过程中,采用把圆分成若干等份,然后拼成一个近似长方形,从而推导出圆的面积公式。这里把圆剪拼成近似长方形的过程,就是把曲线形化归为直线形的过程。
再如平行四边形的面积推导,当我通过创设情境使学生产生迫切要求出平行四边形面积的需要时,便将“怎样计算平行四边形的面积”直接抛向学生,让学生独立自由地思考。这个完全陌生的问题,需学生调动所有的相关知识及经验储备,寻找可能的方法,解决问题。当学生将没有学过的平行四边形的面积计算转化成已经学过的长方形的面积的时候,要让学生明确两个方面:
一是在转化的过程中,把平行四边形剪一剪、拼一拼,最后得到的长方形和原来的平行四边形的面积是相等的(即等积转化)。在这个前提之下,长方形的长就是平行四边形的底,宽就是平行四边形的高,所以平行四边形的面积就等于底乘高。
二是在转化完成之后,应提醒学生反思“为什么要转化成长方形的”。因为长方形的面积先前已经会计算了,所以,将不会的生疏的知识转化成了已经会了的、可以解决的知识,从而解决了新问题。在此过程中转化的思想也就随之潜入学生的心中。其他图形的教学亦是如此。
五、集合思想方法。
小学数学教材中蕴涵着大量的集合思想,集合的思想和概念渗透于数学教学的各个阶段,我们不仅向学生传授知识,而且要把含在教材中的集合思想有意识地对学生进行渗透,这样有利于培养学生的抽象概括能力,有利于提高学生分析和解决问题的能力。教材采用直观手段,利用图形和实物渗透集合的思想方法。如:在教学求8和12的最大公约数时,可以制作课件或幻灯片,让学生从图中可以清楚直观地知道8和12的公约数是1、2和4,最大公约数是4,这样孕伏了交集的思想。
此外,还有类比思想、建模思想、组合思想、极限思想等,在此不一一列举。在小学数学教学中都应注意有目的、有选择、适时地进行渗透。渗透数学思想方法的策略有很多我认为:
1、在知识形成过程中渗透。
数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地分散在教材各章节之中。因此数学思想方法必须通过具体的教学过程加以实现。在教学中,要重视概念的形成过程;引导学生对定理、公式的探索、发现、推导的过程;最后再引导学生归纳得出结论。
2、在问题解决过程中渗透。
数学思想方法存在于问题的解决过程中,数学问题的步步转化无不遵循着数学思想方法的指导。数学思想方法在解决数学问题的过程中占有举足轻重的地位。渗透数学思想方法,不仅可以加快和优化问题解决的过程,而且还可以达到,会一题而明一路,通一类的效果。通过渗透,尽量让学生达到对数学思想方法内化的境界,提高独立获取知识的能力和独立解决问题的能力。
3、在反复运用过程中渗透。
在抓住学习重点、突破学习难点及解决具体数学问题中,数学思想方法是处理这些问题的精髓,这些问题的解决过程,无一不是数学思想方法反复运用的过程,因此,时时注意数学思想方法的运用既有条件又有可能,这是进行数学思想方法教学行之有效的普遍途径.数学思想方法也只有在反复运用中,得到巩固与深化。
总之,重视加强对学生进行数学思想方法的渗透不但有利于提高课堂教学效率,而且有利于提高学生的数学文化素养和思维能力。但是,对学生数学思想方法的渗透不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。因此,在教学过程中,要有机地结合数学知识的内容,做到持之以恒、循序渐进和反复训练,才能使学生真正地领悟数学思想方法,实现质的飞跃。
3. 小学数学里有哪些基本的数学思想方法
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
4. 如何培养小学生的数学学习思维
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
5. 如何培养小学生数学思维
数学知识是人类智慧的结晶,是人类生产生活的重要工具。我们在运用数学知识的同时,离不开我们的思维能力。思维是人脑对客观事物的一般特性和规律的一种间接的、概括的反映过程。进行思维训练,培养学生的思维能力,是小学数学教学的主要任务之一,是实施素质教育开发学生智能,提高学生素质的重要措施。那么,小学生的数学思维能力有什么特点呢?如何培养小学生的思维能力呢?下面就谈谈我个人的体会和做法。
小学生的数学思维能力四个特点
小学生直观形象思维能力较强。小学生总是对自己见到、摸到、嗅到、听到的事物感兴趣,能够留下深刻的印象。例如:一年级的学生计算5+2等于几时,有一部分学生不能马上回答出来,但如果你叫他数小棒,这时,你再问他等于多少,他马上就会回答出来。其实,小孩并不是不知道5+2等于几,而是因为他们的年龄还小,对事物的认识和思维过程总是与具体的事物联系在一起的。
小学生抽象概括能力较弱。小学生的抽象概括能力较弱,他们对抽象概念的理解总是借助于对直观事物的了解。例如,教学三角形的认识时,我让学生分组用纸折出或者用小剪刀裁剪出所学图形,再来总结三角形图形的特点,这样学生就容易说出三角形的特征。
小学生有效思维的时间较短。由于小学生自我控制能力弱,因此,小学生注意力集中的时间较短,那么学生有效思维的时间就较短。如果我们教师一节课大部分时间都在进行新授内容的学习,而不变换花样,课堂教学效果肯定不会太好。
小学生思维的内容浅显,缺乏灵活性。例如:“有10个★,先剪掉2个★,再剪掉3个★,还剩几个★?”教学时,大多数学生都正向思维,先求剪掉2个★后还剩下多少个★,再减去3个★,求出现在五角星的个数。要求现在还剩几个五角星,可以先算剪掉的★有多少个,再用总数减去剪掉的5个★,得出现在的五角星的个数。这一变化,学生学习起来就困难多了,这与学生年龄尚小的思维特点是分不开的。
培养小学生思维能力的几项举措
在观察中发展学生的思维能力。小学生的思维处于由具体形象思维向抽象思维过渡的阶段,而低年级儿童的思维还是以具体形象思维为主,他们对新鲜、形象生动的事物非常敏感,有浓厚的兴趣和强烈的求知欲,喜欢在欢乐中学习和生活,从而忽略了隐蔽的、本质的东西。因此,在教学中采用多种新颖、直观的教学方法,运用色彩鲜艳的图片,生动形象的教具,数学游戏来吸引学生的注意,激发他们的兴趣,引导儿童从大量的感性认识中经过自己的直觉思维理解和掌握所学内容,达到发展儿童思维能力的目的。
例如:《数一数》这一课时,我根据低年级学生好奇心强,易冲动的年龄特点,先让学生寻找自己身上的数,学生争先恐后,兴奋地回答:“我有1个脑袋,1张嘴,2只手,10个手指……”立刻激活了课堂气氛,学生激起了学习的欲望,思维活跃起来了,大家带着求知的心理走进新课。接着我让学生观察他们新的学习环境——教室,让他们寻找教室里的数,学生好奇地寻找:“教室里有1张讲台桌,2 扇门,4个大窗户,8盏灯……”最后我又带领学生到校园进行参观,寻找校园中的数,学生兴趣盎然。使学生亲身感受到数学来源于生活,激发了学生学习数学的兴趣,知道数学是有用的知识,对数学产生了亲切感。整节课学习中学生都呈现一种积极的思维状态。
另外,现代化的教学技术使静态变成了动态,以感知调动学生的积极性,使学生从小养成自己动脑、独立思考的好习惯。例如,在教学加减法混合计算4-2+3=?时,我在多媒体教室里运用电脑技术,展示了一个画面:一个池塘里有4只天鹅,先游走了2只,又游来了3只,提问:现在池塘里有多少只天鹅哪?让学生认真的观察,生动的画面吸引了学生,唤起了他们的求知欲望,激发了思维,使学生很快的掌握了加减混合计算的方法。
在操作中发展儿童的思维能力。低年级学生年纪小的特点,学生动手操作是他们展开思维、获取知识的重要途径。学生动手操作学具,让他们实际数一数、画与画、摆一摆、折一折、拼一拼,符合儿童生性好动、好奇的生理特征,有利于引发学生学习数学的兴趣,从而促进教学内容的深化,使学生的理解进一步深入,提高学生思维的广阔性和灵活性,培养学生初步的抽象概括能力。
例如:讲除法的初步认识“平均分”这节课时,学生对“平均分”这一概念不理解,我在教学中就利用直观的教具来帮助学生突破这一难点。我先拿来20小棒,按照7、6、4、3的顺序分给4个人,然后我问“同学们分得同样多吗?”学生回答“不是”。后来,我一个一个的分,正好每人都分得5根。学生大声说“每个人分得的小棒同样多,这就是平均分。”在这里学生对“平均分”这一抽象的概念的理解正是借助直观的实物来实现的,否则,学生在“平均分”这一概念的理解上不但会不理解,而且还会耗费不少宝贵的时间。
在语言表达中发展儿童思维能力。由于小学低年级学生刚入学不久,所学知识很少,语言区域狭窄更缺乏数学语言,时常不能用准确的数学语言表达清楚一件事情,这会直接影响到学生的学习。数学教学实践表明:语言表达能力增强了,能有力地促进思维的发展。因此,小学低年级数学教学加强学生的语言训练特别重要,教师要从认数、数数开始根据教材的不同内容,进行看图说意,读句说意,多向说意,说算式,说操作过程,说算理等多种形式的说意训练,使他们把表象的材料,用准确的语言叙述出来,形成思维过程。培养学生的数学语言表达能力不是一朝一夕的事,要做到持之以恒,循序渐进。
用词准确。首先要正确使用单位名称,如一棵树、一朵花、一个人、一架飞机等。其次是准确运用数学术语。结合操作,演示观察图形,教学生说一句完整的、准确的数学语言,如带有方位名词的句子及谁比谁多、谁比谁少的句子等。最后结合数的认识和计算的教学,指导学生说几句连贯的数学语言,如叙述计算的说理过程等。
说完整句子,表达完整意思的口头训练。如教师在引导学生做一般应用题时,可先让学生审题,指出它的已知条件和所求,并分析题中的数量关系,有理有据地确定解题思路,然后引导学生用清楚、准确和有条理的语言把它表达出来。
口述数量关系,运算过程,解题思路和训练。例如,在教学一位数的减法时,要结合教具,要求学生看清楚教具的摆放过程说出题意:老师走左手里有8根小棒,拿走3根小棒,剩下5根小棒,即8-3=5。经常对学生进行看图说话的训练,不但提高了学生的口头表达能力,也为以后进一步学习简单应用题打下了基础。我们对学生进行语言训练要贯穿教学的全过程,培养学生把看与说、做与说、想与说、有机的结合起来,让学生在感受到的情景中接受语言训练,由形象到抽象,疏通了学生思维与语言上的障碍,使新知识更清晰,更明确,同是也发展了学生的语言表达能力和思维能力。
总之,数学教学与思维密切相关,数学能力具有和一般能力不同的特性,因此在发展学生思维能力的努力中,不仅要考虑到能力的一般要求,而且要深入数学活动和数学思维的特点,寻求数学活动的规律,让学生的数学思维能力在课堂学习中得到充分的发展。培养学生的数学思维能力,全面提高学生的素质。
6. 浅谈如何在小学数学课堂教学中渗透数学思想方法
数学课程标准总体目标的第一条就明确提出:“让学生获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。”美国教育心理家布鲁纳也指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在人的一生中,最有用的不仅是数学知识,更重要的是数学的思想方法和数学的意识,因此数学的思想方法是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。在小学数学教学中,教师有计划、有意识地渗透一些数学思想方法,是实施素质教育,发展学生能力,提高数学能力,减轻学生课业负担的重要举措,在课程数学改革中有举足轻重的位置。那么,在小学数学教学中,究竟应如何渗透数学思想方法呢?
一、转变观念,重视挖掘数学思想方法。
数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的结论,而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。例如,圆的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立圆的表象;(2)在表象的基础上,指出圆的半径、直径及其特点,使学生对圆有一个更深层次的认识;(3)利用圆的各种表象,分析其本质特征,抽象概括为用文字语言表达的圆的概念;(4)使圆的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。
二、 相机而动,及时引入数学思想方法。
为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。小学阶段,数学思想方法的渗透一般常用直观法、问题法、反复法和剖析法。所谓直观法就是以图表形式将数学思想方法直观化、形象化。直观法的观点是能将高度抽象的数学思想方法变成学生容易感知具体材料,特别是生动有趣的图画给学生留下鲜明的印象。问题法是指学生在教师的启发下,在探究问题答案的过程中,通过回顾、思考、总结,逐步领会数学问题的规律性,进而加深对解题方法、技巧的认识。反复法是指通过同一类情景的多次出现,让学生持续接受某一数学思想方法的熏陶。剖析法是解剖典型的范例,从方法论的角度用儿童能理解的数学语言去描述数学现象,解释数学规律。在教学过程中,教师应掌握方法,不失时机的向学生渗透数学思想方法。教师可以通过以下途径渗透:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,都是向学生渗透数学思想和方法,训练思维,培养能力的极好机会。(2)在问题的解决过程中渗透。如:教学“倒过来推想” 这一课时,在解决问题的过程中,用图表、摘录条件等方法让学生逐步领会“倒过来推想”这种策略的奥妙所在。(3)在复习小结中渗透。在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。如教学完“圆的认识”这一单元之后,可及时帮助学生依靠圆的面积的推导过程回忆多边形面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。(4)在数学讲座等教学活动中渗透。数学讲座是一种课外教学活动形式,它不仅为广大学生所喜爱,而且是数学教师普遍选用的数学活动方式。特别是在数学讲座等活动中适当渗透数学思想和方法,给数学教学带来了生机,使过去那死水般的应试题海教学一改容颜,焕发了青春,充满了活力。
三、千锤百炼——自觉运用数学思想方法。
数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。它在新授中属于“隐含、渗透”阶段,在练习与复习中进入明确、系统的阶段,也是数学思想方法的获得过程和应用过程。这是一个从模糊到清晰的飞跃。而这样的飞跃,依靠着系统的分析与解题练习来实现。学生做练习,不仅对已经掌握的数学知识以及数学思想方法会起到巩固和深化的作用,而且还会从中归纳和提炼出新的数学思想方法。数学思想方法的教学过程首先是从模仿开始的。学生按照例题师范的程序与格式解答和例题相同类型的习题,实际上是数学思想方法的机械运用。此时,并不能肯定学生已领会了所用的数学思想方法,只当学生将它用于新的情景,解决其他有关的问题并有创意时,才能肯定学生对这一教学本质、数学规律有了深刻的认识。
我们知道,对于学习者来说,最好的学习效果是主动参与,亲自发现,数学思想方法的学习也不例外。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思想方法的学习,进而增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题,它既有具体的方法或步骤,又能从一类问题的解法去思考或从思想观点上去把握,形成解题方法,进而深化为数学思想。如在教学完圆环面积的计算以后,可以由易到难,出几题运用移动、割补等方法解决的实际问题,这样做不仅可以让学生领会到转化的数学思想方法,对提高学生的学习兴趣也大有好处。让学生在操作中掌握,在掌握后领悟,使数学思想方法在知识能力的形成过程中共同生成。
数学思想方法是一项系统工程,受诸多因素的影响和制约。我们小学数学教师只有重视对数学思想方法的学习研究,探讨其教学规律,才能适应课程教学改革需要。当然应该看到,数学思想方法的渗透具有长期性、反复性。对学生进行数学思想方法的渗透必定要经历一个循环往复、螺旋上升的过程,往往是几种思想方法交织在一起,在教学过程中教师要依据具体情况,在某一段时间内重点渗透与明确一种数学思想方法,这样反复训练,才能使学生真正地有所领悟。
7. 如何培养儿童的数学思想
链接: https://pan..com/s/1EgE4cr6BJmbuNhA6sJ2WKQ
8. 如何在小学数学教学中渗透数学思想
小学数学中蕴含着丰富的数学思想方法,因此,在小学数学教学中加强数学思想方法的渗透教学不但重要,而且是现实可行的。
一、转变思想,重视挖掘数学思想方法
数学知识明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目标,把数学思想方法教学的要求融入备课环节。
二、把握机会,适时渗透数学思想方法
为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究数学思想方法渗透的手段和方式。小学阶段,数学思想方法的渗透一般常用直观法、问题法、反复法和剖析法。在教学过程中,教师应掌握方法,不失时机地向学生渗透数学思想方法。
三、勤于训练,自觉提炼数学思想方法
数学思想方法的教学是一个长期的过程,它应通过一定的训练,巩固和深化已经掌握的数学知识以及数学思想方法,进而归纳和提炼出新的数学思想方法。在教学中,教师可通过数学思想方法的广泛渗透,让学生从主观上重视数学思想方法的学习,增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题。
四、统筹安排,逐步领悟数学思想方法
对学生进行数学思想方法的渗透必定要经历一个循环往复、螺旋上升的过程,而且常常是几种数学思想方法交织在一起出现,这就要求教师有一个总体的设计安排,分析什么时候渗透哪些数学思想方法,如何渗透,渗透到什么程度,并据此提出不同阶段的具体教学要求,确定在某一段时间内重点渗透与明确哪一种数学思想方法。长此以往,逐步使学生领悟数学思想方法的真谛。
9. 怎样培养小学生的数学思维能力
一、培养语言表达能力
促进学生思维发展实践证明,看的思维效率最低、写的思维效率较高、说的思维效率最高,有许多思维的飞跃和问题的突破正是在说的过程中实现的。思维和语言是密切联系着的,语言是思维的“外壳”,思维是语言的“内核”,思维决定着语言的表达,反过来语言又促进思维的发展,使思维更富有条理,两者相互依存。人们正是借助语言思考问题,表达思想的。在数学课堂教学 中,语言是师生、生生间情感交流、数学思维的工具。小学 生数学思维的形成与发展是借助语言来实现的,发展学生的思维,必须相应地发展学生的语言。
二、合理运用教具,发展学生数学思维
在小学阶段主要是抽象逻辑思维,而小学生的思维特点是以具体形象性为主。数学学科特点与儿童思维水平之间有一定的距离,缩短两者之间距离所采用的手段主要靠直观教学,根据小学生心理特点及认识规律,教具对发展学生抽象思维能力能够起到一定的作用。学生可将原有的智力活动方式外化为动手操作的程序,然后又通过这一外部程序“内化”为小学生的智力活动方式。但是只有适度使用教具,才能有效地促进学生抽象思维的发展,否则,始终依赖教具,思维的水平难以提高。
三、巧妙设计问题,引导学生思维
问题是放飞思维和想象的钥匙,问题的出现能使学生产生一种需要,产生一种对解决问题的渴求,这是一种学习创新的因素,因此教师要精心设计问题,提出一些富有启发性的问题,激发思维,最大限度地调动学生的积极性和主动性。这样学生的思维能力才能得到有效的发展。例如教学梯形面积的计算时,可以先让学生回忆学过的三角形面积计算公式的推导过程,然后展示梯形模型,再提问学生:“你们能用学过的知识推导出梯形的面积计算公式吗?”这个问题引起了学生们的求知欲。他们听到问题后,就自己动手操作,有的画一画,有的剪一剪,拼一拼,合作交流,最后大部分同学都能自己推导出计算公式,成绩差的同学也在其他同学的操作、演说中学 到了知识。小学生的思维打开了,数学学习兴趣浓了,自主探索的愿望有了,就会自觉地去学习,从而能够在知识形成的过程中体会到学习的乐。
四、加强思维方法指导,培养学生创造性思维能力
思维的创造性是智力活动的创造水平。教学中要提倡求异思维,鼓励小学生探究求新,激发他们在头脑中对已有的知识进行“再加工”,以“调整、改组和充实”,创造性地寻找独特简捷的解法,从而提出各种“别出心裁”的方法,这些都能促进学生思维创造性的形成。
小学数学教学中,教师还要注意教给学生逻辑思维的方法,既要指导学生逐步掌握运用观察、比较、分析、综合、抽象、概括、判断、推理等常规思维方法解决数学问题,又要培养学生的直觉思维、发散思维和求异思维等,激发学生寻求新方法的积极情绪,使学生能较好地理解和掌握数学知识,培养学生正确的思维方式并进一步培养学生灵活辨证的思维能力,帮助学生建构稳固且易于迁移的知识结构,发展学生的智力,培养学生的创造性思维能力。从个体发展上看,人的思维从低到高大致可分为直觉动作思维、具体形象思维和抽象逻辑思维3个阶段。小学中、高年级学生的抽象逻辑思维开始萌芽。教师可通过多种形式的思维训练,促进学生抽象逻辑思维的发展,提高学生的创造性思维能力。创造性思维是人类高级的思维活动,是指人们对事物间的联系进行前所未有的思考并产生创见的思维,它是一种突破常规而又合乎逻辑的全新的思维形式,是创造能力的核心。集中体现在善于独立的思考、思维不囿于常规、勇于创新,具有主动、求异、发散、独创等特点。
10. 小学数学思想方法有哪些
1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。联系的一种思想方法如直线上的点(数轴)与表示具体的数是一一对应。如直线上的点(数轴)与表示具体的数是一一对应。2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较,题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。知和未知数量变化前后的情况 4、符号化思想方法、用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。公式、 5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。理解,而且使公式的记忆变得顺水推舟的自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。公式的变形等,在计算中也常用到甲乙甲乙 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若体现对数学对象的分类及其分类的标准整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。按能否被 2 整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。的分类有助于学生对知识的梳理和建构。 8、集合思想方法 集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。 9、数形结合思想方法数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。助分析数量关系。 10、统计思想方法:统计思想方法:小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。 11、极限思想方法:极限思想方法:事物是从量变到质变的,事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长时,化圆为方”“化在讲圆的面积和周长”时“化圆为方化圆的面积和周长化圆为方曲为直”的极限分割思路在观察有限分割的基础上想象它们的极限状态,曲为直的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛的极限分割思盾转化中萌发了无限逼近的极限思想。盾转化中萌发了无限逼近的极限思想。 12、代换思想方法:代换思想方法:他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。把椅子,他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了 4 张桌子和 9 把椅子,共用去 504 把椅子的价钱正好相等,桌子和椅子的单价各是多少?元,一张桌子和 3 把椅子的价钱正好相等,桌子和椅子的单价各是多少?13、可逆思想方法:可逆思想方法:它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,千米,千米,逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的 1/7,第二小时比第一小时多行了 16 千米,还有 94 千米,求,第二小时比第一小时多行了甲乙之距。甲乙之距。 14、化归思维方法: 化归思维方法:把有可能解决的或未解决的问题,通过转化过程,化归”。把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,归结为一类以便解决可较易解决的问题,以求得解决,以求得解决,这就是“化归。这就是化归而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。新知能力的提高无疑是有很大帮助。15、变中抓不变的思想方法:变中抓不变的思想方法:在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共 630 本,其中科技书 20%,后来又买来一些科技书,这时科技书占 30%,又买来科技书多少本?,后来又买来一些科技书,这时科技书占,又买来科技书多少本? 16、数学模型思想方法:数学模型思想方法:所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。 17、整体思想方法:整体思想方法:对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法