⑴ 如何学好数学建模
数学建模是使用数学模型解决实际问题。
对数学的要求其实不高。
我上大一的时候,连高等数学都没学就去参赛,就能得奖。
可见数学是必需的,但最重要的是文字表达能力
回答者:抉择415 - 童生 一级 3-13 14:48
数学模型
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。 测试分析方法也叫做系统辩识。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。
数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等 基本的数学知识
同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等
一般大学进行数学建模式从大二下学期开始,一般在九月份开始竞赛,一般三天时间,三到四人一组,合作完成!!!
数模网 :http://www.shumo.com/main/
⑵ 如何培养学生数学建模素养
应用数学去解决各类实际问题时,首先需要将它转化成为一个数学问题,建立数学模型,然后完成数学模型的解答,最后回归为实际问题的解答.为培养学生的创新意识和创新能力,提高学生的数学素养,让学生真正体会探究的过程,掌握建模的方法。
在《数学课程标准》我们发现这样一句话——“让学生亲身经历将数学实际问题抽象成数学模型并进行解释与应用的过程”,这实际上就是要求把学生学习数学知识的过程当做建立数学模型的过程,并在建模过程中培养学生的数学应用意识,引导学生自觉地用数学的方法去分析、解决生活中的问题。数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。
课堂教学中,教师要引导学生充分经历从数学原型到数学模型的创造过程,培养学生的数学建模能力。例如:教学“公因数”时,我首先呈现一个模拟的实际问题分别用边长是6厘米或4厘米的正方形纸片铺长18厘米、宽12厘米的长方形,那种纸片能将这个长方形铺满?面对这样的问题,学生可以动笔画一画,从具体的操作中找到问题的答案,也可以对照图形通过计算作出做出判断。这个过程对学生来说是很重要的,它是学生尝试建模的过程,但仅仅靠这个过程是不够的,学生还未形成对解决问题一般方法的认识,需要进一步的感知抽象。于是又呈现了第二个问题:还有哪些边长是整厘米数的正方形纸片也正好能铺满这个长方形?这个问题具有一定的开放性和探索性,把学生关注点引向了探索解决问题的一般规律上,举一反三,从特殊到一般。学生在尝试、验证、交流的过程中,逐步体会到:要铺满这个长方形,正方形的边长既要是18的因数,又要是12的因数,至此,学生对公因数的内涵有了更具体的了解,学生的发现则是把实际问题进行了数学模型化。
因此,掌握一定的数学建模的方法,将有助于提高应用数学知识解决实际问题的能力。数学模型并不是一个新生事物,自从数学产生以后,人们运用数学解决实际问题时就一定要使用数学的语言和方法去刻划实际问题,这就是数学模型。“数学建模”就是根据需要针对实际问题组建数学模型的过程。【1】 因此,任何具有一定数学知识的人都具有一定的数学建模能力。在我国,数学建模活动对教学改革的促进作用已得到教育界及数学界的公认,然而此类活动目前仅在大学及部分中学开展,参与的学生只占学生总数的一少部分,而且普遍感到难度较大。这与学生从小未养成自觉应用数学的意识有关,目前,我国的小学数学教育虽然加强了这方面的内容,但是小学生的数学应用意识、数学应用能力提高不够显着,而数学建模是实现这一教育目的重要而且有力的手段。学生在数学建模活动的过程中,体验数学的价值,提高自身的数学应用能力。积极创设让学生感知数学建模思想的情境,因为数学来源于生活,又服务于生活,所以,要将教材上的内容通过生活中熟悉的事例,以情境的方式在课堂上展示给学生,描述数学问题产生的背景,将现实生活中发生的与数学学习有关的素材及时引入课堂。情景的创设要与数学问题有关的各种因素与社会生活实际、自然、社会文化、时代热点问题等相结合,让学生感到有趣、新奇、真实、可操作,满足学生好奇好动的心理要求。这样很容易在学生的头脑中激活已有的生活经验,也容易使学生用积累的经验来感受其中隐含的数学问题,极大地激发起学生的兴趣,从而促使学生将生活问题抽象成数学问题,感知数学模型的存在,感知数学建模思想。
在此,我们经过了一年的研究与分析,在数学建模中建构起了相应的数学模型但并不是学生认识的终结,只有将数学模型还原为具体的数学直观或可感知的数学现实,或利用建模过程中所采用的策略解决其他问题,才能使所建立的数学模型具有生命力。在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和用数学的能力,使数学建模思想在小学数学课堂教学中得到广泛地应用。
⑶ 如何准备数学建模呢 需要做那些准备呢
如何准备数学建模,需要做这些准备。第一,找一本有关建模的基础教程,第二,学会一门数学软件的使用,三,掌握科技论文旋涡状的写作方法。
数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,数学模型或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,数学模型的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
全网招募小白免费学习,测试一下你是否有资格
想要了解数学建模相关学习的更多内容,可以了解一下广州中教在线教育科技有限公司(以下简称:中教在线)。中教在线的课程从零基础开始学习,从简单入门到后期成品出图老师带着你一步一步走过来,毕业后还有就业指导课程,助你解决面试难题,助教老师24小时在线答疑。
⑷ 如何入门数学建模呢我大一可以说是很小白的状态了,现在开始学习5.17比赛
本人大三计算机专业,17年电工杯二等奖、MathorCup一等奖、国赛省一等奖、数创杯一等奖,奖项很水,但有必要介绍一下我参加建模的过程,希望对学弟学妹们有所帮助。
本人大一没想过比赛,大二为了我女朋友才跟她组队开始学着参加数学建模,从2017年2月开始上《数学建模》与《数学建模软件》两门选修课,从中对MATLAB有所了解,数学建模课程比较枯燥,仅仅是听过而已。
到2017年4月校赛,开始拿到校赛题目,时长15天,这15天的时间所做的题目是2017年认证杯第一阶段赛题:考研移动端产品的使用与评价,本题有大量数据,曾经高分通过计算机等级考试二级MS Office的我使用EXCEL对数据进行了处理,这起到了很大的作用,第一题是一个因子分析和聚类分析,经过网络得知可以使用SPSS,于是学习了SPSS,这个很好上手,网络相应的方法即可找到教程。
校赛后,拿电工杯和MathorCup练手,电工杯题目是人口预测,用到了leslie模型,MathorCup是共享单车的题目,又是大数据分析,这次直接是EXCEL完成的。
扯了这么多,给大家说一下如何准备数学建模吧。
首先,数学建模比赛一般分为优化类型的题目和数据分析或评价类的题目,需要3-4天提交一篇论文,三个成员需要有一名写手、一名编程人员和一名统筹调度(建模和想思路)人员,这三人的调度和论文撰写工作最好都要熟悉。是对题目的解答,而论文包括:摘要、问题重述、问题分析、模型假设、符号说明、模型的建立与求解、模型的评价、模型的改进与推广、参考文献、附录几大部分,最关键的是摘要,摘要写的不好,论文直接pass掉。
而如果摘要写的还可以,就是论文格式和所用的模型了,三人均需要熟练掌握OFFICE软件,EXCEL可以处理数据,里面的一些公式和函数一定要会,Word也要熟练掌握,尤其是其中的mathtype公式编辑器,要求所有的公式都需要用公式编辑器输入。编程人员需要熟练掌握Matlab、SPSS、Lingo,都很简单。
对于学习数学建模的方法,大概包括:规划(最优化)、图论、评价、相关性分析、回归等模型,还有一些比较高大上的算法,比如模拟退火算法、神经网络、粒子群算法,这些大多是处理优化问题的,当然神经网络还可以做分类,这些网上都有现成的代码,了解数据输入输出和如何分析结果即可。推荐司守奎老师的《数学建模与应用》一书(侧重实现),还有姜启源老师的《数学模型》一书(侧重原理的讲解)。
多看看优秀论文,注意格式和内容,掌握这些,建模应该不成问题了,祝各位同学好运。
⑸ 要做好数学建模应该做好哪些知识
那得看你是做哪方面的了……建模最好能够知道大部分建模和一部分编程。。线性规划、少量非线性规划、遗传算法之类的……其实有建模的书可以看看……大部分题型都有……如果建模能力比较强的话总结一下就好了,如果不行就多看看多接触接触……
编程我不知道……不过我们组编程的一般这些软件都会,Lingo,Lindo, SPSS,Matlab,有的时候还用C。。程序之类的网上可以查到一个大概……有的自己改改就行了
写作最需要的是跟建模的配合好,一定要跟着整个队伍的脚步,随时都要知道做到哪里了,然后自己总结总结看看能写什么写一写。写的时候要注意大框架,框架一定要好,就是思维的顺序一定要逻辑性强,让人一看就能有个大致的思路,知道你怎么做的。。在做题之前最好先总结一套自己用的顺手的模版,这样在写的时候不至于漏了什么……一定要写快,要有时间反复修改。。如果时间紧就不容易出好质量。。。差不多我知道的就这些。。我做过建模和写作。。差不多也就这么多了
⑹ 对数学建模一点不懂的人该如何搞好数学建模
赛前:必须确定自己擅长哪个方面(数学建模、计算机编程、写作),平时在训练时着重锻炼这方面的能力。
赛时:做题过程中,注重知识点的搜集、整合。就我所做的训练和做参加的比赛来看,建模的题目都是有原型的,这个比赛只是将原型不断扩展。本质还是围绕着某个知识点展开。另外,学会利用网络搜集资料。很多题目都需要大量的数据进行佐证,或者运用到前人的论点,所以必须通过各种方法找出这些信息点。
⑺ 参加数学建模要做什么,怎样培训的
参加数学建模,就是解决实际问题,你可以上网搜一下往年的资料,试题,试着做一下,最后设计解决方案,最终以论文的形式提交,如果进入全国评审,有机会去答辩,将你们的设计方案,做成PPT进行演说
⑻ 如何学会建模
在国内,学3d建模还是行业龙头培训机构王氏教育更靠谱——【点击进入-官方免费试学】 http://www.huixueba.com.cn/school/3dmodel?type=2&zdhhr-1y1r-1699724287587606468
王氏教育是一所有着19年历史的知名3d建模教育品牌,至今在全国13个一二线城市都拥有直营校区。想知道王氏教育实体培训有多强,去校区现场考察下就知道了,如果暂时抽不出时间,也可以先在官网跟在线老师详细了解:
点击:【王氏教育全国实体校区课程-在线试听】 www.huixueba.net/web/AppWebClient/AllCourseAndResourcePage?type=1&tagid=307&zdhhr-1y1r-1699724287587606468
王氏教育较同类培训机构的优势:无论是创始人还是管理层都是3d建模专业的专家,了解整个产业,需求,就业,无缝深入到市场,做到投资型教育机构所不能企及的细致入微。王氏教育的课程研发也一直是行业争相模仿的对象,每个专业都由一线公司的项目总监参与研发和用人对接,学员无缝输送对应企业。学员遍布全国各大3d建模公司。
而在教学辅助研发上一直也是无出其右的存在,多年来拥有着巨大口碑的教学辅助产品包括:绘学霸APP:苹果商店应用市场均可搜索【绘学霸】下载,里面的3d建模视频教程多达8000多套,涵盖了所有的3d建模类型【点击进入】
www.huixueba.com.cn/Scripts/download.html
⑼ 如何培养小学生或初中生的数学建模能力
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。