导航:首页 > 数字科学 > 数学研究什么

数学研究什么

发布时间:2022-04-15 01:41:39

❶ 数学研究的目的是什么

数学是人类探究世界,研究自然界任何事物的核心。
没有数学就没有物理学,化学,生物学,人类将永远停滞不前。

没有前人不懈的研究后人怎能一步步地前进?
爱因斯坦,牛顿这些大学者自己都不知道给后世人做了多大的贡献。
也许你现在研究的永远没有实际意义。
但也许在几十年,数千年甚至更远得将来它将给后世人带来巨大的启发。这谁知道呢。
我们也许永远无法突破光速,那光速方程没有实际意义,但也许我们哪天突破了光速,那它做出的贡献就是空前的。
即使发现它是错的,但走了弯路并不等于原地踏步。

❷ 数学是研究什么的

数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学源自于古希腊,是研究数量、结构、变化以及空间模型等概念的一门科学。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学的基本要素是:逻辑和直观、分析和推理、共性和个性。

❸ 数学研究哪些领域

数学研究的各领域 数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连着。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之着名的结果。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 结构许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及 数,且包含有非常着名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演着核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。 基础与哲学为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,Pioncare也把集合论比作有趣的“病理情形”,Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.” 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。

❹ 什么是数学数学主要研究些什么

数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过
抽象化

逻辑推理
的使用,由计数、计算、量度和对物体形状及运动的观察中产生。

❺ 数学的主要学什么

代数:一元一次方程、二元一次方程、三元一次方程、一元一次不等式及其应用
函数:一次函数、反比例函数、二次函数及其应用
统计学初步及应用
几何:线:平行线、垂直的判定和性质

角:角的表达、角的计算
三角形、四边形的性质和判定
圆的有关定理

❻ 数学主要研究些什么

数学是研究数量、结构、变化以及空间模型等概念的一门学科.透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生.

❼ 数学的研究对象和要解决的问题是什么有哪些主要特点

数学研究的对象是数量、结构、变化、空间以及信息等概念,解决的是现实世界的任何问题。数学的主要特点是严谨性。

所有的数学对象本质上都是人为定义的,它们并不存在于自然界,而只存在于人类的思维与概念之中。因而,数学命题的正确性,无法像物理、化学等以研究自然现象为目标的自然科学那样,能够借助于可以重复的实验、观察或测量来检验,而是直接利用严谨的逻辑推理加以证明。一旦通过逻辑推理证明了结论,那么这个结论也就是正确的。

(7)数学研究什么扩展阅读:

数学的公理化方法实质上就是逻辑学方法在数学中的直接应用。在公理系统中,所有命题与命题之间都是由严谨的逻辑性联系起来的。从不加定义而直接采用的原始概念出发,通过逻辑定义的手段逐步地建立起其它的派生概念;由不加证明而直接采用作为前提的公理出发,借助于逻辑演绎手段而逐步得出进一步的结论,即定理;然后再将所有概念和定理组成一个具有内在逻辑联系的整体,即构成了公理系统。

严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所作的定义,到了19世纪才让数学家用严谨的分析及正式的证明妥善处理。数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计算难以被验证时,其证明亦很难说是有效地严谨。

❽ 数学是研究什么和什么的科学

数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。

在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

数学的基本特征是:

1、高度的抽象性和严密的逻辑性。

2、应用的广泛性与描述的精确性。

3、研究对象的多样性与内部的统一性。

(8)数学研究什么扩展阅读

有关数学定义的名言:

1、数学是上帝描述自然的符号。——黑格尔

2、自然界的书是用数学的语言写成的。——伽利略

3、宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。——华罗庚

4、数学是研究抽象结构的理论。——布尔巴基学派

5、数学是知识的工具,亦是其它知识工具的泉源。——笛卡尔用一,从无,可生万物。——莱布尼兹

❾ 数学研究的对象是什么

就是和数学有关的知识!
下面分别解释什么是数学,什么是知识。
****************************************************************************
数学:
数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”

自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。

从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显着的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,着名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。

对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。

事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。”

另外,对数学还有一些更加广义的理解。如,有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,另一方面,如果所考虑的领域存在于数学之外,数学就起着用科学的作用,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.”

从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供了一个视角。

基于对数学本质特征的上述认识,人们也从不同侧面讨论了数学的具体特点。比较普遍的观点是,数学有抽象性、精确性和应用的广泛性等特点,其中最本质的特点是抽象性。A,。亚历山大洛夫说,“甚至对数学只有很肤浅的知识就能容易地觉察到数学的这些特点:第一是它的抽象性,第二是精确性,或者更好他说是逻辑的严格性以及它的结论的确定性,最后是它的应用的极端广泛性”王梓坤说,“数学的特点是:内容的抽象性、应用的广泛性、推理的严谨性和结论的明确必”这种看法主要从数学的内容、表现形式和数学的作用等方面来理解数学的特点,是数学特点的一个方面。另外,从数学研究的过程方面、数学与其它学科之间的关系方面来看,数学还有形象性、似真性、拟经验性。“可证伪性”的特点。对数学特点的认识也是有时代特征的,例如,关于数学的严谨性,在各个数学历史发展时期有不同的标准,从欧氏几何到罗巴切夫斯基几何再到希尔伯特公理体系,关于严谨性的评价标准有很大差异,尤其是哥德尔提出并证明了“不完备性定理…以后,人们发现即使是公理化这一曾经被极度推崇的严谨的科学方法也是有缺陷的。因此,数学的严谨性是在数学发展历史中表现出来的,具有相对性。关于数学的似真性,波利亚在他的《数学与猜想》中指出,“数学被人看作是一门论证科学。然而这仅仅是它的一个方面,以最后确定的形式出现的定型的数学,好像是仅含证明的纯论证性的材料,然而,数学的创造过程是与任何其它知识的创造过程一样的,在证明一个数学定理之前,你先得猜测这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比.你得一次又一次地进行尝试。数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数学的学习过程稍能反映出数学的发明过程的话,那么就应当让猜测、合情推理占有适当的位置。”正是从这个角度,我们说数学的确定性是相对的,有条件的,对数学的形象性、似真性、拟经验性。“可证伪性”特点的强调,实际上是突出了数学研究中观察、实验、分析。比较、类比、归纳、联想等思维过程的重要性。
***********************************************************************************
知识:
知识到底是什么,目前仍然有争议。我国对知识的定义一般是从哲学角度作出的,如在《中国大网络全书·教育》中“知识”条目是这样表述的:“所谓知识,就它反映的内容而言,是客观事物的属性与联系的反映,是客观世界在人脑中的主观映象。就它的反映活动形式而言,有时表现为主体对事物的感性知觉或表象,属于感性知识,有时表现为关于事物的概念或规律,属于理性知识。”从这一定义中我们可以看出,知识是主客体相互统一的产物。它来源于外部世界,所以知识是客观的;但是知识本身并不是客观现实,而是事物的特征与联系在人脑中的反映,是客观事物的一种主观表征,知识是在主客体相互作用的基础上,通过人脑的反映活动而产生的。

上述定义为我们讨论知识的内涵提供了哲学基础。但宏观的哲学反映论的认识还需要从个体认知角度进行具体化,这样才能有效地用以指导学校的具体教学。

与哲学不同,认知心理学是从知识的来源、个体知识的产生过程及表征形式等角度对知识进行研究的。例如,皮亚杰认为,经验(即知识)来源于个体与环境的交互作用,这种经验可分为两类:一类是物理经验,它来自外部世界,是个体作用于客体而获得的关于客观事物及其联系认识;另一类是逻辑——数学经验,它来自主体的动作,是个体理解动作与动作之间相互协调的结果。如儿童通过摆弄物体,获得关于数量守恒的经验,学生通过数学推理获得关于数学原理的认识。皮亚杰对知识的定义是从个体知识的产生过程来表述的。布卢姆在《教育目标分类学》中认为知识是“对具体事物和普遍原理的回忆,对方法和过程的回忆,或者对一种模式、结构或框架的回忆”,这是从知识所包含的内容的角度说的,属于一种现象描述。

我们认为,在理解知识的含义时,有必要把作为人类社会共同财富的知识与作为个体头脑中的知识区分开来。人类社会的知识是客观存在的,但个体头脑中的知识并不是客观现实本身,而是个体的一种主观表征,即人脑中的知识结构,它既包括感觉、知觉、表象等,又包括概念、命题、图式,它们分别标志着个体对客观事物反应的不同广度和深度,这是通过个体的认知活动而形成的。一般来说,个体的知识以从具体到抽象的层次网络结构(认知结构)的形式存储于大脑之中。哲学主要对人类社会共同知识的性质进行研究,心理学则主要对个体知识的性质进行研究。

有关知识的名言

高尔基: 爱护书籍吧,它是知识的源泉。

诺思科特: 博学的人是知识的蓄水池,而不是源泉。

不吸取知识之光,心灵就会被黑暗笼罩。

弗莱克斯: 大学是这样一种机构:它自觉地献身于对知识的追,力争解决难题,用挑剔的眼光去评价人们的成就,并用真正的高水平去教育人。

切斯特菲尔德: 当我们步入晚年,知识将是我们舒适而必要的隐退的去处;如果我们年轻时不去栽种知识之树,到老就没有乘凉的地方了。

宋·朱熹: 当务之急,不求难知;力行所知,不惮所难为。

切斯特菲尔德: 读书能获得知识;但更有用的知识对世界的认识却只能通过研究各种各样的人才能获得。

塞·约翰逊: 对知识的渴求是人类的自然意向,任何头脑健全的人都会为获取知识而不惜一切。

恩格斯: 复杂的劳动包含着需要耗费或多或少的辛劳、时间和金钱去获得的技巧和知识的运用。

卡斯特: 管理者不承担创造知识的任务,他的任务是有效地运用知识。

·里格斯: 经理人员的管理能力是他在品质、知识和经验方面的功能。这三种因素相互作用形成一个特殊的管理方式。

邓小平: 靠空讲不能实现现代化,必须有知识,有人才。没有知识,没有人才,怎么上得去?

科尔莫戈罗夫: 科学是人类的共同财富,而真正的科学家的任务就是丰富这个令人类都能受益的知识宝库。

赫·斯宾塞: 科学是系统化了的知识。

约瑟夫·鲁: 科学是为了那些勤奋好学的人,诗歌是为了那些知识渊博的人。

奥·霍姆斯: 科学是“无知”的局部解剖学。

叔本华: 没有深厚经验衬托的广博思想和知识,就像是一本每页仅有两行正文却有四十行注释的教科书。

论衡: 人有知识,则有力矣。

实践是知识的母亲,知识是生活的明灯。

爱因斯坦: 学习知识要善于思考,思考,再思考。

❿ 数学是研究什么和什么的科学

数学是研究数量关系和空间形式的科学。

数学是一切科学(科技)研究的基础。正是由于数学的发展,我们现在才能够利用它来发展其他科学。尽管21世纪才过去20年,数学领域已经出现了很多重大的研究成果。

例如,2011年,彼得·舒尔茨(Peter Scholze)引入了完美胚空间(Perfectoid Spaces)的概念,震惊了代数和算术几何领域。完美胚空间是存在于p进几何领域的一类代数几何对象。

数与形是数学的两个研究对象

数与形是数学的两个研究对象,数代表的是数量关系,形代表的是空间形式。数形结合方法充分体现了化归理念,在数学的教学过程中可以用这种方法,对于学生的思考、解决问题的能力有很大的提升。

数形结合主要分为三种情况:第一种为由形思数,其方法为解析法、代数法与三角法等;第二种为由数思形,其方法为构造图形法;第三种为数形互化,其方法为图示法、体积法与面积法等。

阅读全文

与数学研究什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:748
乙酸乙酯化学式怎么算 浏览:1413
沈阳初中的数学是什么版本的 浏览:1367
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:896
数学c什么意思是什么意思是什么 浏览:1424
中考初中地理如何补 浏览:1314
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1404
如何回答地理是什么 浏览:1038
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1495
二年级上册数学框框怎么填 浏览:1715
西安瑞禧生物科技有限公司怎么样 浏览:1014
武大的分析化学怎么样 浏览:1257
ige电化学发光偏高怎么办 浏览:1346
学而思初中英语和语文怎么样 浏览:1671
下列哪个水飞蓟素化学结构 浏览:1433
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1073