❶ 学习数学有什么用
要说数学在生活中的直接用途,真的说不出几个,买菜?找零?那学几何和函数又是要干嘛用呢?但其实大家也都非常明白,数学确实是很多学科的基础。
但作为父母,想要给孩子一个合适的回应很难很难,何况我们自己可能都捋不清答案。希望今天文章中作者给大家提供的答案,可以让你下一次和孩子谈论数学时得到更多启发。
一门不招人喜欢的学科
数学为什么这么不招人喜欢呢?
首先跟数学这门学科的特性有关。数学是一门研究模式的学科,是试图用数量, 形状和关系这些手段来描述世界的一种方式。
不管是任何学科知识,孩子们理解起来往往是习惯从自己亲身的经历出发,比如我们上语文课,写一篇描述自己假期生活的作文,每个孩子都能写出东西来,而且没有绝对的对错之分,孩子很容易能够从中体会到乐趣所在。但数学就让人一头雾水了,不光跟实际生活相差甚远,正确答案也都是非错即对,又枯燥又抽象。
此外,数学这门学科的区分度也很高,能学不能学的孩子之间差距非常大,这也会让孩子产生畏难和挫败感。
所以作为家长,我们或许很难改变学校的教育模式,但我们可以帮助孩子在日常生活中拓展对于数学的一些生活体验。
比如外出旅行的时候,引导孩子在车牌上查找数字组合(例如连续的3、4、5或不连续的2、5、7或平方144之类的数字);此外平时出门可以和孩子一起利用地图软件计算出的不同路线时间,来预估走哪条路最快到达终点;看电视的时候,和孩子一起计算下电视节目中有多少时间是广告。
这样让孩子自然而然的在生活中接触数学,能够增加孩子对数学这门学科的认识,为什么要学数学?这个问题也就迎刃而解了。
数学对我以后的生活有用吗?
其实我们每天都在接触数学——我们在用地图导航的时候、预测事件发生的可能性的时候、买新家具测量尺寸的时候、公司开会听到各种数据的时候……
很多人都以为只有极少数的职业才会用到数学,然而其实ta们都错了。绝大多数职业:护士、设计师、建筑工人、记者、司机等等每天都在使用数学。
但学校里的数学恰恰是以技能为基础的——比如教你怎么确定角度,怎么用公式来确定物体的体积或容量,很少会教孩子数学究竟是什么。比如,一堂数学课上老师往往会对孩子讲:我们做了A、然后 B、然后 C,最后就能得到正确答案,而且往往是唯一的正确答案。
这种教育模式,往往导致孩子们从来都不会主动去思考数学本身,也不会充分理解每一个步骤的意义。对于许多学生来说, 他们对数学的理解变成完成老师设定的一个个具体任务,对于真正需要理解的概念呢?老师的要求是:背过就行了。
正是因为学校对数学的关注是技能学习,而不是解决真正的问题,孩子想要在数学这方面钻研的兴趣很容易就会被扼杀。
关于数学,我和学生们经常讲的一个类比是, 学习数学技好比弹钢琴。你知道钢琴的每一个具体组成,并不代表你就懂得音乐是什么了,一样的,知道了数学的概念、公式和算术法,虽然非常重要, 但却不足以让你真正的理解数学是什么。
过分强调数学的技能(基本数字理论,、方程式),忽略作为数学家的实际工作(推理、 解决问题、建模、使用技术),也会导致愿意在大学继续学习数学的学生人数下降。
美国近几年的统计数据显示,2000-2014 之间, 学习高等数学的学生比例从11.9% 下降到 9.6%,学习中级数学的人数从25% 降到到19.1%。香港地区高等数学毕业生占全体毕业生的比例由2015年的25%下跌到了2016年的16%。
由于大陆地区没有具体数据,我们只能参考一下国家统计局官网发布的全国本科理学专业在校学生人数,2012年这个数字是约125万人,到了2015年,直接下滑到了约107万人。
数学的意义是什么呢?
下一次,当你的孩子问你数学有什么用时,或许可以这样回答:
数学能帮你理解周遭事物发生变化的原因:为什么同样的礼物一过节就会变得更贵?怎么趁打折的时候以便宜的价格买到自己喜欢的玩具?
预测未来事情发生的可能性:麦当劳随机送的玩偶有多大几率正好是我想要的那一款?
用数学解决谜题:电子游戏中的主角如何出招才能最大限度的缩减技能冷却时间,把敌人杀死?
总之,数学的确非常美妙,但也由于其自身特性很容易变成应试教育中每个孩子的噩梦,不过如果我们能够善于利用生活中的小常识,就能和孩子一起学会领略数学这门学科的美妙之处。
❷ 学数学有什么用
例如,宇宙飞船升空,也要经过精确的计算才能确保万无一失
再比如最贴近我们的生活的,商店也要经过计算才能知道销售量的多少,营业额,还有亏损的情况什么的;还有你们家,你的父母也要计算一个月或者一年的收入和支出。
无论是生活上,生意上,还是科技上,都要用到数学!
❸ 数学的作用是什么啊
数学一种工具,它逻辑性强,能训练人们的思维能力;它注重方式方法,能让你的思维更敏锐;再者就是能帮助你解决一些实际问题。掌握数字规律,训练逻辑思维,数学是一门基础学科,除了语言学科以外,其他学科基本上都会运用到数学。
(3)数学什么用扩展阅读:
一、数学结构
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。
此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统。
把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。
代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
二、严谨性
数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思。
数学术语亦包括如同胚及可积性等专有名词,但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”.
严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”,而这情形在历史上曾出现过许多的例子。
在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理。
数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨。
❹ 学习数学到底有什么用
解决因人类实际需要而提出的各种问题,包括商业、航海、历法计算、桥梁、寺庙、宫殿的建造、武器的制造等方面;数学本身就是一种精神,一种探索精神,这种精神的两个要素,即对理性或真理与完美的追求,帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象。
在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程与三角函数。而其后更发展出更加精微的微积分。
❺ 数学有什么用
数学是人的一种逻辑思维方式,是人们理性的研究各种问题的方法总结。
中国古代的数学都是实用型的,由于没有建立理论基础,在宋朝之后就停滞不前了。而西方的数学则是纯粹的思维方式,抽象工具,慢慢的走向了理性,以至现在我们学的都是西方数学。
纯粹的数学可能暂时没有用处,但是也许几十百年后会有作用。比如说矩阵、数论、群论、黎曼几何、偏微分方程……开始出来的时候仅仅是纯粹的数学理论。但是现在却广泛的用于工程计算、密码学、相对论和天文学、物理学中。
应用数学,则是正对某个问题寻找解决方法。其中重要的如数学建模、运筹学、博弈论,都广泛的用于金融、经济、市场分析、公司运营等方面。
数学是一种思维方法,所以数学涉及到社会的方方面面。
其中复杂的数学理论与物理学往往是走得最近的,与信息科学、计算机科学有着很强的联系。而应用数学则与工程科学、经济金融、市场管理等紧密结合。
对于绝大多数人而言,数学是一种解决问题的工具,将问题抽象、建模、解决数学方程、获得结果还原成解决问题的结果。
只有少数的数学家是进行理论研究,为未来科学的发展提供可能的高级解决方法。相当一部分的数学家进入经济学领域和信息科学领域,例如诺贝尔经济学奖有超过一半的都是数学专业毕业的,计算机领域的发明者冯·诺依曼(数学家)和计算机领域最高奖图灵奖(图灵也是数学家)获得者相当一部分也是数学专业出身。
当然如果你并不涉及金融经济、工程应用、数理化生等自然学科的复杂问题,懂一点加减乘除算算自己的工资奖金也够用了。
(它还是上名牌大学的工具)
❻ 学数学有什么用啊
数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。
今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现。
❼ 数学有什么用处
1.数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
2.数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。
3.数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
❽ 数学有什么用
在我看来,数学对普通人最大的作用是“把事情说清楚”。
比如我问我奶奶,什么是圆?她回答道,天上的太阳就是圆。严格来说,这什么都没有说。她既没有解释什么东西是圆(充分条件),也没有解释圆是什么东西(必要条件)。
想把事情说清楚,就得用上数学,我们可以说,圆是欧几里得平面上到定点的距离等于定常数的点的集合。
更进一步,数学还可以帮助我们加深对事物的理解。经过简单的数学推导,我们也可以说,圆是欧几里得平面上到两定点的距离的比值是某不为1的常数的点的集合。这就是不懂数学的人所不知道的事实了。
把事情说清楚,真的很难。大家都知道概率,也在生活中经常使用概率,但在20世纪初Kolomogrov的公理化之前,没有人能把概率是什么说得很清楚,这使得概率处于一个很尴尬的地位。
❾ 数学对我们有什么用
如果你问我物理化学生物有什么用,问我英语有什么用,可能我不知道怎么跟你说,但是数学的话它是在生活中用处是非常多的,比如说你去超市买东西,你要去计算一下你花了多少钱,对方找你多少钱,或者说你在街边买东西的话,比如说别人告诉你几斤是多少钱,比如10元三斤和三元一斤的笑话。
还有如果你是开店铺的或者是做一些小生意的话,数学的话用处是比较多的,比如一些简单的口算呀,心算呀都是通过数学来计算的。所以数学在我们生活中还是用处比较大的。
❿ 数学有什么用
数学在人类文明的发展中起着非常重要的作用,数学推动了重大的科学技术进步。
但在历史上, 限于技术条件,依据数学推理和推算所作的预见,往往要多年之后才能实现。数学为人类生产和生活 带来的效益容易被忽视。进入二十世纪,尤其是到了二十世纪中叶以后,科学技术发展到这一步:数 学理论研究与实际应用之间的时间差已大大缩短,特别是当前,随着电脑应用的普及,信息的数字化 和信息通道的大规模联网,依据数学所作的创造设想已经达到可即时试验、即时实施的地步。数学技 术将是一种应用最广泛、最直接、最及时、最富创造力和重要的实用技术,
一、数学与科学技术进步
二十世纪科学技术进步给人类生产和生活带来的巨大变化确实令人赞叹不已。从远古时代 起一直是人们幻想的“顺风耳”,“千里眼”,“空中飞行”和“飞向太空”都在这一世纪成为现实。回 顾二十世纪的重大科学技术进步,以下几个项目元疑是影响最大的,而数学的预见和推动作用是 非常关键。
(1)先有了麦克斯韦方程人们从数学上论证了电磁波,其后赫兹才有可能做发射电磁波的实 验,接着才会有电磁波声光信息传递技术的发展。
(2)爱因斯但相对论的质能公式首先从数学上论证了原子反应将释放出的巨大能量,预示了 原子能时代的来临.随后人们才在技术上实现了这一预见,到了今天,原子能已成为发达国家电 力能源的主要组成部分。
(3)牛顿当年已经通过数学计算预见了发射人造天体的可能性,差不多过了将近三个世纪, 人们才实现了这一预见。
(4)电子数字计算机的诞生和发展完全是在数学理论的指导下进行的。数学家图灵和冯诺依 曼的研究对这一重大科学技术进步起了关键性的推动作用。
(5)遗传与变异现象虽然早就为人们所注意。生产和生活中也曾培养过动植物新品种。遗传 的机制却很长时间得不到合理解释,十九世纪60年代,孟德尔以组合数学模型来解释他通过长 达8年的实验观察得到的遗传统计资料,从而预见了遗传基因的存在性。多年以后,人们才发现 了遗传基因的实际承载体,到了本世纪50年代沃森和克里发现了DNA分子的双螺旋结构。这以 后,数学更深刻地进入遗传密码的破译研究。
数学是人类理性思维的重要方式,数学模型,数学研究和数学推断往往能作出先于具体经验 的预见。这种预见并非出于幻想而是出于对以数学方式表现出来的自然规律和必然性的认识,随 着科学技术的发展,数学、预见的精确性和可检验性日益显示其重意义。
二、时代大潮的潮头
我们面临一个科学技术迅猛发展的时代。信息的数字化和信息的数学处理已经成为几乎所 有高科技项目共同的核心技术。从事先设计、制定方案,到试验探索、不断改进,到指挥控制、具体 操作,处处倚重于数学技术。众多新闻报道反映出这一时代大潮汹涌澎湃的势头。下面列举的仅 仅是其中一小部分。
(1)数学技术已经成为工业新产品研制设计的重要关键技术。1994年4月9日,被称为“百 分之百数字化确定”的波音777型飞机举行盛大隆重的出厂典礼.在过去,进行新机型设计,必须 对模型构件和样机反复作强度试验和空气动力学性。:试验。稍有不妥,就必须改变设计再来一轮 试验。新机种的研制周期长达十余年,消耗大量原材料和能源,采用了数学技术以后,所有的试验 可以通过精确设定的数学模型在计算机中进行,探索和修改都可以通过数学指令去实现。新机种 的研制周期从十多年缩短到三年半,大幅度节约了原材料和能源。
(2)许多国家认识到,发展高清晰度电视是未来经济技术竞争的主战场之一。日本和美国都 投入大量资金和人力进行有关研究,日本起步最早,但所研究的是模拟式的;美国虽然起步稍晚, 但所研究的是数字式的。经过多年的较量,数字式研究以其高度优越性取得关键性胜利。1994年 2月24日《人民日报》报道:日本政府正式宣布,转向研究数字式高清晰度电视,承认数字式因其 优越性而得到世界多数国家赞同,很可能成为未来的国际标准。
应该指出,电视屏幕不仅是现代人们日常生活所不可缺少的,而且可能通过联网成为信息传 递处理的工作面。几乎所有重要的工作岗位都将与之有关。数学技术在如此重要项目的激烈较量 中起了决定作用。
(3)199=年的海湾战争是一场现代高科技战争,其核心技术竟然也是数学技术。这一事实引 起人们不小的惊讶。美国总结海湾战争经验得出结论是:“未来的战场是数字化的战争”。
干扰和失真是电磁波通信的一大难题。早在六十年代太空开发竞争的初期,美国施行。‘阿波罗登登月计划时,就已经意识到:由于太空中过强的干扰,无论依靠怎样精密的电子硬件设备 ,也 无法收到任何有用的信息,更不用说操纵控制了,采用了信息数字化、纠错编码、数字滤波等一整套数学通讯技术和数学控制技术之后,送人登月的计划才得以顺利完成,二十年后,在海湾战争 中,多国部队方面使用这一套技术把对方干扰得既聋又瞎,却能让自己方面的信息畅通无阻。采 用精密酌数学技术,可以在短短数十秒的时间内准确拦截对方发射的导弹,又可以引导对方发射 导弹准确击中对方的目标。也正是这一套信息数字化的数学技术,在开发高清晰度电视的竞争中 取得压倒性的胜利。开发一种数学技术可以在,。此众多方面施展效用,足见数学的广泛适用性。
(4)1995年1月,在贩神大地震之后,美国利用数学模型进行地震预测,预告本世纪末加州南部可能发生大地震。
(5)1995年3月,我国中央人民广播电台宣布启用数字式转播方式,指出以前的模拟式转播 方式效果差,所以改用新的转播方式。
(6)1995年6月,欧州联盟开会研讨未来数字化通信的统一制式。
(7)1996年2月,我国电子工业部宣布“九五计划”开发重点:数字化信息技术。所订的两个重 点研制项目是:数字式高清晰度电视接受机样机和数字式激光盘。
(8)1996年4月,我国国家科委发布招标公告,正式宣布数字式高清晰度电视开发项目。
三、当代与未来的发展倚重数学
仅以几件事为例就能清楚地看到数学对当代人们的生产和生活所起的重要作用。当代的生 产和生活离不开石油,石油勘探和生产需要了解地层结构。多年以来已经发展了一整套数学模型 和数学程序。人们发射地震波,然后将各个层面反射回来的信息收集起来力。以数学处理,就能将 地层各个剖面的图像和地层结构的全貌展现出来。这已是目前石油勘探与生产普遍采用的数学 技术。无独有偶,涉及到人的生命也有类似的情况,医生需要了解病人躯体内部和器官内部的状 况与变异,以前的调光片将骨骼和各种器官全都重叠在一起,往往难以辨认)现在也有了一整套 数学方案。借助了精密设备收集射线穿透人体或核磁共振带出的信息力。以数学处理就能将人体各个削面的状况清晰地层现出来,需要了解哪个层面就可以调出哪个层面的图片来,关系到人们 的生产与生活,这样的例证很多很多。
在涉及生存与发展的关键时刻,特别是在涉及人类命运的紧要关头,数学也起着非常重要的 作用。在进入本世纪最后十年的时候,美国国家研究委员会公布了两份重要报告《人人关心数学 教育的未来》和《振兴美国数学—— 90 年代的计划》.两份报告都提到:近半个世纪以来,有三个时 期数学的应用受到特别重视,促进了数学的爆炸性发展,“第二次世界大战促成了许多新的强有 力数学方法的发展……“由于苏联人造卫星发射的刺激,美国政府增加投入促进了数学研究与数 学教育的发展”,“计算机的使用扩大了对数学的需求”.在二次世界大战太平洋战场的关键时刻, 由于采用数学方法破译日军密码,美国海军才能在舰只力量对比绝对劣势的情况下,赢得中途岛 海战的胜利,歼灭日本联合舰队的主力,扭转整个太平洋战局。在关系人类命运的二次世界大战 中,美国几乎是整个反法西斯战线的后勤补给基地。到了反攻阶段,要组织跨越两个大洋的大规 模行动,物资调运和后勤支援成了非常关键的问题,这刺激了有关数学方法的迅速发展。这期间 发展起来并且在战后迅速普及到各个方面的线性规划实用数学技术,为人类带来了数以千亿计 的巨大效益。到了1957年,苏联将第一颗人造卫星迭人太空,震撼了美国朝野。意识到有关数学 应用方面的差距,美国政府加大投入,促进了数学研究与数学教育的迅速发展,随着计算机的发 展,对数学有了空前的需求,刺激数学进入了第三个大发展的时期。
已经有了很多很多极有说服力的例证,说明无论在日常的生产和生活中,还是在涉及生存和 发展的关键时刻,数学都起着非常重要的作用,在新世纪即将到来之前科学技术和生产的发展对 数学提出了空前的需求,我们必须把握时机增大投入,加强数学研究与数学教育,提高全民族的 数学素质,才能更好地迎接未来的挑战。