㈠ 什么叫做数学
数学是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
㈡ 数学是什么什么是数学
数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
数学定义的三个主要类型被称为逻辑学家,直觉主义者和形式主义者,每个都反映了不同的哲学思想学派。都有严重的问题,没有人普遍接受。
西方数学简史
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。
第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年。
算术(加减乘除)也自然而然地产生了。更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普。历史上曾有过许多各异的记数系统。
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算。数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备。但尚未出现极限的概念。
17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发。
㈢ 你认为数学是什么
对我来说数学是一种消遣,我喜欢那种沉浸在思考之中的感觉,那是一种忘我的状态,同时我也喜欢那种在解题之后得到的快乐。
数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。
数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。
基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。
㈣ 什么是数学,数学的概念
数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
-------选自<普通高中数学新课程标准>
㈤ 什么叫做什么叫做数学
数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现。创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。数学分支1.算术 2.初等代数3.高等代数 4. 数论5.欧式几何 6.非欧式几何7.解析几何 8.微分几何9.代数几何 10.射影几何学11.拓扑几何学 12.拓扑学13.分形几何 14.微积分学15. 实变函数论 16.概率和数量统计17.复变函数论 18.泛函分析19.偏微分方程 20.常微分方程21.数理逻辑 22.模糊数学23.运筹学 24.计算数学25.突变理论 26.数学物理学
㈥ 什么是数学
数学[ shù xué ]
生词本
基本释义详细释义
[ shù xué ]
研究现实世界的空间形式和数量关系的科学。初等数学包括算术、初等代数、初等几何和三角等。高等数学有数理逻辑、数论、代数学、几何学、拓扑学、函数论、泛函分析、微分方程、概率论、数理统计等分支。数学的理论具有严格性、抽象性和应用的广泛性等特点。
㈦ 什么是数学数学在现实生活中的作用有什么
引言:说起数学这个名词,很多人都会想到数学这门学科。确实从小学到大学甚至学到更高的层次都离不开数学,那么到底什么是数学呢?数学在现实生活中究竟有哪些作用呢?
说起生活中的数学普遍一些的,就是加减乘除这些基本的计算了,因为这些数字都是跟钱有关的。但是实际上数学中最广泛的应用还是在各种学科的基础理论支撑,比如说财经中就需要运用到数学来进行计算以及报表的分析。而物理学科也是需要数学的。尤其是计算机,其实计算机的基础就是通过各种数字的排列来表达信息的。同时数学在各种机密计算以及航天事业中的作用也是不容小觑的。
㈧ 什么叫数学
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
(8)什么的数学扩展阅读:
一、数学空间
空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常着名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。
数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。
在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
二、数学标点
数学是一门国际性的学科,对各个方面都要求严谨。
我国规定初等及以上的数学已可以算作是科技类文献。
我国规定文献类文章句号必须用“.”,数学采用的目的一是为此,二是为了避免和下脚标混淆,三是因为我国曾在国际上投稿数学类研究报告,人家却不采用,因为外国的句号大多不是“。”.
在证明题中,∵(因为)后面要用“,”,∴(所以)后面要用“.”,在一道大题中若有若干小问,则每小问结束接“;”,最后一问结束用“.”,在①②③④这样的序号后都应用“;”表连接,最后一个序号后用“.”表结束.
㈨ 你心目中的数学是什么样的
首先开头进行简介,中间部分加以叙述,最后总结。
“1、2、3、4……这是数学中的数字。”在我很小的时候,妈妈对我说。那时候,数学在我心中只不过是1、2、3几个数字罢了;在幼儿园里,我知道了1+1=2数学又是几道算式;渐渐地,上小学了,我对数学又有了新的认识——已不再是从前那样的加加减减了。
小学一至三年级,数学没有什么难得到我的,考试也总能得满分或者是高分,我就觉得数学也不过如此嘛!在一次全国数学“希望杯”比赛中,我才发现数学范围之广,程度之深,这时候我才发现自己的肤浅。
在科学领域数学是多么重要,它就犹如一片汪洋大海,是那么的广阔,我就是大海中的一粒沙子,是那么渺小!数学之所以有生命力,就在于有趣;数学之所以有趣,就在于它对思维的启迪、开拓。
在老师的教导下,数学变得多么神奇:加减乘除竟能用简便方法进行计算;小数竟然有这么多有趣的奥秘;三角形还具有稳定性;连数学“黑洞”也慢慢进入了我的视野……我开始阅读一些数学家的故事,如:祖冲之、华罗庚、苏步青……他们对数学的执着令我震撼!
我要在数学的海洋中遨游,去汲取知识的营养,去开阔我的视野,去探索复杂而富有规律的秘密,去。
数学,在我心中,犹如一盏明灯,温暖而灿烂无比,照耀着我前进。