Ⅰ 什么是数学题
在初中阶段,分为两大类就是代数题和几何题,还有一种就是一题里面既考代数又考几何。
Ⅱ 什么是数学问题中的求证题
你好,求证题也就是已知一些条件,然后求出它的证明过程,就是也跟证明题的意思是一模一样的。主要还是对于定理和公理的一些相关的应用。
Ⅲ 经典数学问题是什么
1 阿基米德分牛问题Archimedes' Problema Bovinum
太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。
在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7。
在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数
是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7。
问这牛群是怎样组成的?
02题 德·梅齐里亚克的法码问题The Weight Problem of Bachet de Meziriac
一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物。
问这4块砝码碎片各重多少?
03题 牛顿的草地与母牛问题Newton's Problem of the Fields and Cows
a头母牛将b块地上的牧草在c天内吃完了;
a'头母牛将b'块地上的牧草在c'天内吃完了;
a"头母牛将b"块地上的牧草在c"天内吃完了;
求出从a到c"9个数量之间的关系?
04题 贝韦克的七个7的问题Berwick's Problem of the Seven Sevens
在下面除法例题中,被除数被除数除尽:
* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * *
* * * * * *
* * * * * 7 *
* * * * * * *
* 7 * * * *
* 7 * * * *
* * * * * * *
* * * * 7 * *
* * * * * *
* * * * * *
用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢
?
05题 柯克曼的女学生问题Kirkman's Schoolgirl Problem
某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每
个女生同其他每个女生同一行中散步,并恰好每周一次?
06题 伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of the Misaddressed letters
求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置。
07题 欧拉关于多边形的剖分问题Euler's Problem of Polygon Division
可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?
08题 鲁卡斯的配偶夫妇问题Lucas' Problem of the Married Couples
n对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的
妻子并坐,问有多少种坐法?
09题 卡亚姆的二项展开式Omar Khayyam's Binomial Expansion
当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂。
10题 柯西的平均值定理Cauchy's Mean Theorem
求证n个正数的几何平均值不大于这些数的算术平均值。
11题 伯努利幂之和的问题Bernoulli's Power Sum Problem
确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np。
12题 欧拉数The Euler Number
求函数?x)=(1+1/x)x及?x)=(1+1/x)x+1当x无限增大时的极限值。
13题 牛顿指数级数Newton's Exponential Series
将指数函数ex变换成各项为x的幂的级数。
14题 麦凯特尔对数级数Nicolaus Mercator's Logarithmic Series
不用对数表,计算一个给定数的对数。
15题 牛顿正弦及余弦级数Newton's Sine and Cosine Series
不用查表计算已知角的正弦及余弦三角函数。
16题 正割与正切级数的安德烈推导法Andre's Derivation of the Secant and Tangent Series
在n个数1,2,3,…,n的一个排列c1,c2,…,cn中,如果没有一个元素ci的值介于两个邻近的值ci-1和ci+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列。
试利用屈折排列推导正割与正切的级数。
17题 格雷戈里的反正切级数Gregory's Arc Tangent Series
已知三条边,不用查表求三角形的各角。
18题 德布封的针问题Buffon's Needle Problem
在台面上画出一组间距为d的平行线,把长度为l(小于d)的一根针任意投掷在台面
上,问针触及两平行线之一的概率如何?
19题 费马-欧拉素数定理The Fermat-Euler Prime Number Theorem
每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示。
20题 费马方程The Fermat Equation
求方程x2-dy2=1的整数解,其中d为非二次正整数。
21题 费马-高斯不可能性定理The Fermat-Gauss Impossibility Theorem
证明两个立方数的和不可能为一立方数。
22题 二次互反律The Quadratic Reciprocity Law
(欧拉-勒让德-高斯定理)奇素数p与q的勒让德互反符号取决于公式
(p/q)·(q/p)=(-1)[(p-1)/2]·[(q-1)/2]
23题 高斯的代数基本定理Gauss' Fundamental Theorem of Algebra
每一个n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n个根。
24题 斯图谟的根的个数问题Sturm's Problem of the Number of Roots
求实系数代数方程在已知区间上的实根的个数。
就这些了。。。不好找了
Ⅳ 千禧年七大数学难题是什么
是NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯存在性和质量缺口、纳卫尔-斯托可方程、BSD猜想。其中庞加莱猜想已被解决。
数学难题可以是指那些历经长时间而仍未有解答/完全解答的数学问题。
古今以来,一些特意提出的数学难题有:平面几何三大难题、希尔伯特的23个问题、世界三大数学猜想、千禧年大奖难题等。
费尔马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。
古希腊数学家丢番图写过一本着名的《算术》(Arithmetica),经历中世纪的愚昧黑暗到文艺复兴的时候,《算术》的残本重新被发现研究。
1637年,法国业余大数学家费尔马(Pierre de Fremat)在《算术》的关于勾股数问题的页边上,写下猜想:xn+ yn=zn是不可能的(这里n大于2;x,y,z,n都是非零整数)。
此猜想后来就称为费尔马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。
1847年,库默尔创立“代数数论”这一现代重要学科。他还证明了当n﹤100时,除却n=37、59、67这些不规则质数的情况,费尔马大定理都成立,是一次大飞跃。
历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他于1908年为费尔马大定理设悬赏10万马克(相当于现时的160万美元多),期限1908-2007年。
无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的n,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个x,y,z,振动了世界,获得菲尔兹奖(数学界最高奖)。Ⅳ 什么是数学三大难题
世界近代三大数学难题之一四色猜想
四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、着名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、着名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最着名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色 猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战 。1878~1880年两年间,着名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目, 实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。
--------
世界近代三大数学难题之一 费马最后定理
被公认执世界报纸牛耳地位地位的纽约时报于1993年6月24日在其一版头题刊登了一则有
关数学难题得以解决的消息,那则消息的标题是“在陈年数学困局中,终于有人呼叫‘
我找到了’”。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的
男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马
小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极
大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以“业余王子
”之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的
数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内
容是有关一个方程式 x2 + y2 =z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定
理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之
两股,也就是一个直角三角形之斜边的平方等于它的两股的平方和,这个方程式当然有
整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13…
等等。
费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法
找到整数解。
当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙
法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百
多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最
后定理也就成了数学界的心头大患,极欲解之而后快。
十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和
三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫
斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人,
有效期间为100年。其间由于经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然
如此仍然吸引不少的“数学痴”。
二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的
,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确
的(注286243-1为一天文数字,大约为25960位数)。
虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终于解
决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是
利用二十世纪过去三十年来抽象数学发展的结果加以证明。
五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志
村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八0年代德
国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联
论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论
由威利斯在1993年的6月21日于美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报
告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的
证明马上被检验出有少许的瑕疵,于是威利斯与他的学生又花了十四个月的时间再加以
修正。1994年9月19日他们终于交出完整无瑕的解答,数学界的梦魇终于结束。1997年6
月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金
,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。
要证明费马最后定理是正确的
(即xn + yn = zn 对n33 均无正整数解)
只需证 x4+ y4 = z4 和xp+ yp = zp (P为奇质数),都没有整数解。
----------------
世界近代三大数学难题之一 哥德巴赫猜想
哥德巴赫是德国一位中学教师,也是一位着名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 1742年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。但是对于更大的数目,猜想也应是对的,然而不能作出证明。欧拉一直到死也没有对此作出证明。从此,这道着名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。至此,哥德巴赫猜想只剩下最后一步(1+1)了。陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”。1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有更多的人去攀登这座高峰。
Ⅵ 数学中我知道什么和提出什么数学问题的区别
你好,“我知道什么”可以理解为自己获得了什么知识、技能;而“提出数学问题”意味着能自主地去思考,并提出一个数学问题,这也并非一件易事。
Ⅶ 什么样的数学问题是好的数学问题
数学是一门工具性学科,问题不存在好坏之分。他本身的问题就是角决问题。只不过现在的数学作为一门学科,来选拔出有一定数学思维的人。就这而言,好的数学问题是能够较好的符合考纲精神的题。
其实,老师说的所谓的好题只不过是在套用那些专家的话而矣,实质就是假大空。
你要是数学考满分,哪怕是不做题,老师也会说你是个能发现好的数学问题的人
Ⅷ 数学问题这是什么意思
请
Ⅸ 什么是数学中的解答题
就是用数学推理的思路来解答数学问题。
这里所指的数学推理就是指如用‘∵’(因为)‘∴’(所以)这样的推理过程来解答数学问题。
解答题是中学阶段的基本题型,它的综合性很强,涉及知识范围广,可以是代数也可以是几何类型的题目,解这种题时要联系学过的概念,公式,仔细分析,可以从条件入手,也可以从问题入手,这种题一般都有一个或两个突破点,只要找到了突破点马上题目就迎刃而解了。
Ⅹ 数学问题
“近二十年证明没有本质进展”
“近20年来,哥德巴赫猜想的证明没有本质进展。”北京师范大学数学系教授、将在本届国际数学家大会上作45分钟报告的陈木法说,“它的证明就差最后一步。如果研究取得本质进展,那猜想也就最终获得了解决。”
据陈木法介绍,在2000年,国际上曾有机构列出了数学领域的7个千年难题,悬赏百万美元求解,但并未将哥德巴赫猜想包括在内。
“在最近几年甚至十几年内,哥德巴赫猜想还难以获得证明。”中科院数学与系统科学研究院研究员巩馥洲这样分析,现在猜想已成为一个孤立的问题,同其他数学学科的联系不太密切。同时,研究者也缺少有效的思想、方法来最终解决这一着名猜想。“陈景润先生生前已将现有的方法用到了极至。”
剑桥大学教授、菲尔茨奖得主贝克尔也表示,陈景润在这项工作上取得的进展是迄今为止最好的求证结果,目前还没有更大的突破。
“在解决这类数学难题时,可能一二百年内都难有进展,也可能短期内就有重大进展。”在巩馥洲看来,数学研究中存在一定的偶然性,也许可以让人们提前在猜想证明上获得进展。
猜想求证呼唤全新思路
为求解“核心数学中具有挑战性的问题”,中科院数学与系统科学研究院成立了专门的国际研究团队。研究院负责人、研究员李福安介绍说:“我们期望在黎曼猜想等领域取得突破。这一研究团队并没有将哥德巴赫猜想作为努力的方向。”
陈景润,这位距“皇冠上的明珠”最近的数学家在1996年离我们而去。他的成就曾一度唤起人们“冲击”哥德巴赫猜想的“激情”。2000年3月,英国和美国两家出版公司曾悬赏百万美元,征求哥德巴赫猜想的最终解决方案,再次使之成为社会关注的热点。两年过去了,直到最后的截止日期,也没有人前来领取这笔奖金。
据估计,全世界约有二三十人有能力从事猜想的求证。对于这一着名猜想的最终解决,潘承洞曾撰文指出:现在看不出沿着人们所设想的途径有可能去解决这一猜想。我们必须对有关方法作出重大改进,或提出新的方法,才可能对猜想取得进一步的研究成果。王元的判断与此基本相似:“对哥德巴赫猜想的进一步研究,必须有一个全新的思路。”作为我国当代着名的数学家,王元和潘承洞都在猜想证明过程中做出过重大贡献。
“数学研究不只是做难题,我不赞成片面炒作这些难题。在我看来,研究这些数学难题的人不到世界数学家的1%。”陈木法觉得,“数学研究不必非得去解答别人提出的问题,我们要多做些原创性的研究,注重整体研究力量的提高。”
“民间数学家” 距离“明珠”有多远?
国际数学家大会开幕前夕,一些“民间数学家”纷纷来到北京,声称自己“已完全证明”了哥德巴赫猜想,引起社会的关注。
实际上,近年来我国不断有人拿着猜想的“最终证明结果”轮流拜访多位数学家,也不时传出“农民成功证明哥德巴赫猜想”、“拖拉机手摘得‘皇冠上的明珠’”等“爆炸性新闻”。
“随着大会的临近,数学研究院收到的关于猜想研究成果的稿件也越来越多。”中科院研究员李福安说,“20多年有成千上万的业余爱好者,我就收到了200多封信。他们的选题主要集中在哥德巴赫猜想上。由于猜想表述非常简洁,大多数的人都能懂,所以很多人都想来破解这个难题。”
“民间人士热爱科学的热情应该保护,但我们不提倡民间人士去攻世界数学难题。他们可以用这种热情去做更合适的事情。”李福安说,“从来稿中可以看出,不少作者既缺乏基本的数学素养,又不去阅读别人的数学论文,结果都是错的。”
“国外也有这种现象。比如在柏林国际数学家大会期间,就有人在会场张贴论文,宣称自己证明了(1+1)。”首届国家最高科学技术奖获得者、本届国际数学家大会主席吴文俊说:“一些业余爱好者会一点儿数学,有一点儿算术基础,就去求证(1+1),并把所谓的证明论文寄给我。其实像哥德巴赫猜想这样的难题,应该让‘专门家’去搞,不应该成为一场‘群众运动’。”
为此,许多数学家对数学爱好者提出忠告:“如果真想在哥德巴赫猜想证明上做出成绩,最好先系统掌握相应的数学知识,以免走不必要的弯路。”
新闻背景:摘取“皇冠上的明珠” 还差最后一步
新华网北京8月20日电(记者 李斌 张景勇邹声文) 徐迟那篇着名的报告文学,使数亿普通百姓知道了“自然科学的皇后是数学;数学的皇冠是数论;哥德巴赫猜想,则是皇冠上的明珠”,也知道了陈景润是全世界离那颗明珠最近的人——只差最后一步。但20多年过去了,这一步还是没有人能够跨过去。
哥德巴赫猜想已让人类猜了整整260个年头。1742年,德国数学家哥德巴赫写信给大数学家欧拉,提出每个不小于6的偶数都是二个素数之和(简称“1+1”)。例如,6=3+3,24=11+13,等等。欧拉回信表示,相信猜想是正确的,但他无法加以证明。
从那时起的近170年,许多数学家费尽心血,想攻克它,但都没有取得突破。直到1920年,挪威数学家布朗终于向它靠近了一步,用数论中古老的筛法证明了:每个大偶数是九个素因子之积加九个素因子之积,即(9+9)。
此后,对猜想的“包围圈”不断缩小。1924年,德国数学家拉德马哈尔证明了(7+7)。1932年,英国数学家爱斯斯尔曼证明了(6+6)。1938年,苏联数学家布赫斯塔勃证明了(5+5),2年后又证明了(4+4)。1956年,苏联数学家维诺格拉多夫证明了(3+3)。1958年,我国数学家王元又证明了(2+3)。1962年中国数学家潘承洞证明了(1+5),王元证明了(1+4);1965年,布赫斯塔勃等又证明了(1+3)。“包围圈”越来越小,越来越接近终极目标(1+1)。
1966年,中国数学家陈景润成为世界上距这颗明珠最近的人——他证明了(1+2)。他的成果处于世界领先地位,被国际数学界称为“陈氏定理”。由于在哥德巴赫猜想研究方面的卓越成就,1982年,陈景润与王元、潘承洞共同荣获国家自然科学奖一等奖。
从陈景润证明(1+2)以来,哥德巴赫猜想的最后一步——证明(1+1)没有本质进展。有关专家认为,原有的方法已被用到极至,必须提出全新的方法,采用全新的思路,才可能对猜想取得进一步的研究成果。(完)
附:
【哥德巴赫猜想简介】
当年徐迟的一篇报告文学,中国人知道了陈景润和哥德巴赫猜想。
那么,什么是哥德巴赫猜想呢?
哥德巴赫猜想大致可以分为两个猜想:
■1.每个不小于6的偶数都是两个奇素数之和;
■2.每个不小于9的奇数都是三个奇素数之和。
■哥德巴赫相关
哥德巴赫是德国一位中学教师,也是一位着名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。
【哥德巴赫猜想小史】
1742 年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被1和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。
从此,这道着名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。
到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。
■哥德巴赫猜想证明进度相关
在陈景润之前,关于偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下:
1920年,挪威的布朗证明了“9 + 9”。
1924年,德国的拉特马赫证明了“7 + 7”。
1932年,英国的埃斯特曼证明了“6 + 6”。
1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
1938年,苏联的布赫夕太勃证明了“5 + 5”。
1940年,苏联的布赫夕太勃证明了“4 + 4”。
1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一很大的自然数。
1956年,中国的王元证明了“3 + 4”。
1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年。自"陈氏定理"诞生至今的40多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。
■布朗筛法相关
布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j= 2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了。前一部分的叙述是很自然的想法。关键就是要证明'至少还有一对自然数未被筛去'。目前世界上谁都未能对这一部分加以证明。要能证明,这个猜想也就解决了。
然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和。故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2 或 2+1 同属质数+合数类型)在参与无限次的"类别组合"时,所有可发生的种种有关联系即1+1或1+2完全一致的出现,1+1与1+2的交叉出现(不完全一致的出现),同2+1或2+2的"完全一致",2+1与2+2的"不完全一致"等情况的排列组合所形成的各有关联系,就可导出的"类别组合"为1+1,1+1 与1+2和2+2,1+1与1+2,1+2与2+2,1+1与2+2,1+2等六种方式。因为其中的1+2与2+2,1+2 两种"类别组合"方式不含1+1。所以1+1没有覆盖所有可形成的"类别组合"方式,即其存在是有交替的,至此,若可将1+2与2+2,以及1+2两种方式的存在排除,则1+1得证,反之,则1+1不成立得证。然而事实却是:1+2 与2+2,以及1+2(或至少有一种)是陈氏定理中(任何一个充分大的偶数都可以表示为两个素数的和,或一个素数与两个素数乘积的和),所揭示的某些规律(如1+2的存在而同时有1+1缺失的情况)存在的基础根据。所以1+2与2+2,以及1+2(或至少有一种)"类别组合"方式是确定的,客观的,也即是不可排除的。所以1+1成立是不可能的。这就彻底论证了布朗筛法不能证"1+1"。
由于素数本身的分布呈现无序性的变化,素数对的变化同偶数值的增长二者之间不存在简单正比例关系,偶数值增大时素数对值忽高忽低。能通过数学关系式把素数对的变化同偶数的变化联系起来吗?不能!偶数值与其素数对值之间的关系没有数量规律可循。二百多年来,人们的努力证明了这一点,最后选择放弃,另找途径。于是出现了用别的方法来证明哥德巴赫猜想的人们,他们的努力,只使数学的某些领域得到进步,而对哥德巴赫猜想证明没有一点作用。
哥德巴赫猜想本质是一个偶数与其素数对关系,表达一个偶数与其素数对关系的数学表达式,是不存在的。它可以从实践上证实,但逻辑上无法解决个别偶数与全部偶数的矛盾。个别如何等于一般呢?个别和一般在质上同一,量上对立。矛盾永远存在。哥德巴赫猜想是永远无法从理论上,逻辑上证明的数学结论。
【哥德巴赫猜想意义】
“用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。偶数的猜想是说,大于等于4的偶数一定是两个素数的和。”(引自《哥德巴赫猜想与潘承洞》)
关于哥德巴赫猜想的难度我就不想再说什么了,我要说一下为什么现代数学界对哥德巴赫猜想的兴趣不大,以及为什么中国有很多所谓的民间数学家对哥德巴赫猜想研究兴趣很大。
事实上,在1900年,伟大的数学家希尔伯特在世界数学家大会上作了一篇报告,提出了23个挑战性的问题。哥德巴赫猜想是第八个问题的一个子问题,这个问题还包含了黎曼猜想和孪生素数猜想。现代数学界中普遍认为最有价值的是广义黎曼猜想,若黎曼猜想成立,很多问题就都有了答案,而哥德巴赫猜想和孪生素数猜想相对来说比较孤立,若单纯的解决了这两个问题,对其他问题的解决意义不是很大。所以数学家倾向于在解决其它的更有价值的问题的同时,发现一些新的理论或新的工具,“顺便”解决哥德巴赫猜想。
例如:一个很有意义的问题是:素数的公式。若这个问题解决,关于素数的问题应该说就不是什么问题了。
为什么民间数学家们如此醉心于哥猜,而不关心黎曼猜想之类的更有意义的问题呢?
一个重要的原因就是,黎曼猜想对于没有学过数学的人来说,想读明白是什么意思都很困难。而哥德巴赫猜想对于小学生来说都能读懂。
数学界普遍认为,这两个问题的难度不相上下。
民间数学家解决哥德巴赫猜想大多是在用初等数学来解决问题,一般认为,初等数学无法解决哥德巴赫猜想。退一步讲,即使那天有一个牛人,在初等数学框架下解决了哥德巴赫猜想,有什么意义呢?这样解决,恐怕和做了一道数学课的习题的意义差不多了。
当年柏努力兄弟向数学界提出挑战,提出了最速降线的问题。牛顿用非凡的微积分技巧解出了最速降线方程,约翰·柏努力用光学的办法巧妙的也解出最速降线方程,雅克布·柏努力用比较麻烦的办法解决了这个问题。虽然雅克布的方法最复杂,但是在他的方法上发展出了解决这类问题的普遍办法——变分法。现在来看,雅克布的方法是最有意义和价值的。
同样,当年希尔伯特曾经宣称自己解决了费尔马大定理,但却不公布自己的方法。别人问他为什么,他回答说:“这是一只下金蛋的鸡,我为什么要杀掉它?”的确,在解决费尔马大定理的历程中,很多有用的数学工具得到了进一步发展,如椭圆曲线、模形式等。
所以,现代数学界在努力的研究新的工具,新的方法,期待着哥德巴赫猜想这个“下金蛋的鸡”能够催生出更多的理论。
【哥德巴赫猜想证明的错误例子】
“哥德巴赫猜想”公式及“哥猜”证明 “哥德巴赫猜想”的证明:设偶数为M,素数删除因子为√M≈N,那么,偶数的奇素数删除因子为:3,5,7,11…N, 1、偶数(1+1)最低素数对的正解公式为:√M/4,即N/4。 2、如果偶数能够被奇素数删除因子L整除。偶数的素数对为最低素数对*(L-1)/(L-2),比如说偶数能够被素数3整除,该偶数的素数对≥(3-1) /(3-2)*N/4=N/2,又如偶数能够被素数5整除,素数对≥(5-1)/(5-2)*N/4=N/3,如果偶数既能被素数3整除,又能被素数5整除,那么,该偶数的素数对≥2N/3。对于偶数能够被其它奇素数删除因子整除,照猫画虎。 ∵当偶数为大于6小于14时,都知道有“哥德巴赫猜想”(1+1)的解。又根据上面的“哥猜”正解公式,大于16的偶数(1+1)的素数对都≥1,∴“哥德巴赫猜想”成立
猜想:歌德巴赫猜想一:任意一个>=6的偶数都可以表示为两个素数相加.
经我猜想得: 任意奇质数末尾数必为1,3,5,7,9 (其中1 ,9 至少为两位数,如11,19)
这样就有:1+1,1+3,1+5,1+7,1+9,
3+3,3+1,3+5,3+7,3+9,
5+5,5+1,5+3,5+7,5+9,
7+7,7+1,7+3,7+5,7+9,
9+9,9+1,9+3,9+5,9+7,
(其中都可以为多位数的素数相加)
所得的和末尾必为0,2,4,6,8,(都需>=6的偶数)
这样所的的和必定为>=6的偶数,
但这不一定可以填充所有的偶数,所以这方法是错误的`!条件不充分的!