导航:首页 > 数字科学 > 高数学什么

高数学什么

发布时间:2022-04-16 04:30:00

‘壹’ 高数主要学习些什么

2020年春季学期微课徐世松高等数学(超清视频)网络网盘

链接: https://pan..com/s/1qUNZZW_DHwJHP8kDpvZ-zg

提取码: yvz3 复制这段内容后打开网络网盘手机App,操作更方便哦

若资源有问题欢迎追问~

‘贰’ 高数是什么

高数是高等数学的简称。

数学其实就有点像一种游戏,一种可以调参数、改规则的游戏,只不过有些规则下面比较好玩,能走得更远,发现更多东西,然后人们就采用了这一套规则——这个规则可以是某套公理体系,也可以是某些新数学概念的可以随着时间改变而改变的定义等等。

一般认为,16世纪以前发展起来的各个数学总的是属于初等数学的范畴,17世纪以后建立起了更为深入的微积分、空间解析几何与线性代数、级数、常微分方程等数学学科,因此称为高等数学。

1691年,法国数学家米歇尔·罗尔提出罗尔定理,对代数学的发展起了重要作用,是微分学中的几个中值定理之一,是导数应用的理论基础。另一名法国数学家拉格朗建立微分学中的几个中值定理之一,弥补了罗尔定理中的不足条件,并建立拉格朗日乘法。

法国数学家洛必达在1696年建立洛必达法则,并发表了着作《阐明曲线的无穷小于分析》,它是微积分学方面最早的教科书,洛必达法则是对柯西中值定理结合未定式极限推出的一种求导方法,实现了简便实用的数学原则。

‘叁’ 高数主要学些什么

高等数学课程分为两个学期进行学习。它的教学内容通常包含一元函数微积分、多元函数微积分、空间解析几何与向量代数初步、微分方程初步、场论初步等。通过该课程的教学,不但使学生具备学习后续其他数学课程和专业课程所需要的基本数学知识,而且还使学生在数学的抽象性、逻辑性与严密性方面受到必要的训练和熏陶,使他们具有理解和运用逻辑关系、研究和领会抽象事物、认识和利用数形规律的初步能力。因此,高等数学教学不仅关系到学生在整个大学期间甚至研究生期间的学习质量,而且还关系到学生的思维品质、思辨能力、创造潜能等科学和文化素养。高等数学教学既是科学的基础教育,又是文化基础教育,是素质教育的一个重要的方面。

‘肆’ 高等数学包括哪些内容

主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。是工科、理科、财经类研究生考试的基础科目。

指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。

广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。

(4)高数学什么扩展阅读

初级数学的基本内容

一、小学

整数、分数和小学的四则运算、数与代数、空间与图形、简单统计与可能性、一元一次方程,圆,正负数,立体几何初步。

二、初中

代数部分: 有理数(正数和负数及其运算),实数(根式的运算),平面直角坐标系,基本函数(一次函数,二次函数,反比例函数),简单统计,锐角三角函数,方程、(一元一次方程,二元一次方程组,一元二次方程,三元一次方程组),因式分解、整式、分式、一元一次不等式。

几何部分:全等三角形,四边形(重点是平行四边形及特殊的平行四边形),对称与旋转,相似图形(重点是相似三角形),圆的基本性质,

三、高中

集合,基本初等函数(指数函数、对数函数,幂函数,高次函数),二次函数根分布与不等式,柯西不等式,排列不等式,初等行列式,三角函数,解析几何与圆锥曲线(椭圆,抛物线,双曲线),复数,数列,高等统计与概率,排列组合,平面向量,空间向量,空间直角坐标系,导数以及相对简单的定积分。

‘伍’ 大学里面高等数学都学的什么啊

在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。

理工科的不同专业,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。

微积分的基本概念和内容包括微分学和积分学。

微分学的主要内容包括:极限理论、导数、微分等。

积分学的主要内容包括:定积分、不定积分等。

从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。

数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的收集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议。

概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。

例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。

随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题。

因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

(5)高数学什么扩展阅读

19世纪以前确立的几何、代数、分析三大数学分支中,前两个都原是初等数学的分支,其后又发展了属于高等数学的部分,而只有分析从一开始就属于高等数学。分析的基础——微积分被认为是“变量的数学”的开始,因此,研究变量是高等数学的特征之一。

原始的变量概念是物质世界变化的诸量的直接抽象,现代数学中变量的概念包含了更高层次的抽象。如数学分析中研究的限于实变量,而其他数学分支所研究的还有取复数值的复变量和向量、张量形式的。

以及各种几何量、代数量,还有取值具有偶然性的随机变量、模糊变量和变化的(概率)空间——范畴和随机过程。描述变量间依赖关系的概念由函数发展到泛函、变换以至于函子。

与初等数学一样,高等数学也研究空间形式,只不过它具有更高层次的抽象性,并反映变化的特征,或者说是在变化中研究它。例如,曲线、曲面的概念已发展成一般的流形。

按照埃尔朗根纲领,几何是关于图形在某种变换群下不变性质的理论,这也就是说,几何是将各种空间形式置于变换之下来来研究的。

无穷进入数学,这是高等数学的又一特征。现实世界的各种事物都以有限的形式出现,无穷是对他们的共同本质的一种概括。所以,无穷进入数学是数学高度理论化、抽象化的反映。数学中的无穷以潜无穷和实无穷两种形式出现。

在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。

另外一些形式上更为抽象的极限过程,在别的数学学科中也都起着基本的作用。还有许多学科的研究对象本身就是无穷多的个体,也就说是无穷集合,例如群、环、域之类及各种抽象空间。这是数学中的实无穷。能够处理这类无穷集合,是数学水平与能力提高的表现。

为了处理这类无穷集合,数学中引进了各种结构,如代数结构、序结构和拓扑结构。另外还有一种度量结构,如抽象空间中的范数、距离和测度等,它使得个体之间的关系定量化、数字化,成为数学的定性描述和定量计算两方面的桥梁。上述结构使得这些无穷集合具有丰富的内涵,能够彼此区分,并由此形成了众多的数学学科。

数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。

参考资料

高等数学(基础学科名称)_网络

‘陆’ 高数主要学什么

一、函数与极限
常量与变量
函数
函数的简单性态
反函数
初等函数
数列的极限
函数的极限
无穷大量与无穷小量
无穷小量的比较
函数连续性
连续函数的性质及初等函数函数连续性
二、导数与微分
导数的概念
函数的和、差求导法则
函数的积、商求导法则
复合函数求导法则
反函数求导法则
高阶导数
隐函数及其求导法则
函数的微分
三、导数的应用
微分中值定理
未定式问题
函数单调性的判定法
函数的极值及其求法
函数的最大、最小值及其应用
曲线的凹向与拐点
四、不定积分
不定积分的概念及性质
求不定积分的方法
几种特殊函数的积分举例
五、定积分及其应用
定积分的概念
微积分的积分公式
定积分的换元法与分部积分法
广义积分
六、空间解析几何
空间直角坐标系
方向余弦与方向数
平面与空间直线
曲面与空间曲线
七、多元函数的微分学
多元函数概念
二元函数极限及其连续性
偏导数
全微分
多元复合函数的求导法
多元函数的极值
八、多元函数积分学
二重积分的概念及性质
二重积分的计算法
三重积分的概念及其计算法
九、常微分方程
微分方程的基本概念
可分离变量的微分方程及齐次方程
线性微分方程
可降阶的高阶方程
线性微分方程解的结构
二阶常系数齐次线性方程的解法
二阶常系数非齐次线性方程的解法
十、无穷级数
无穷级数是研究有次序的可数无穷个数或者函数的和的收敛性及和的数值的方法,理论以数项级数为基础,数项级数有发散性和收敛性的区别。只有无穷级数收敛时有一个和;发散的无穷级数没有和。算术的加法可以对有限个数求和,但无法对无限个数求和,有些数列可以用无穷级数方法求和。包括数项级数(包括正项级数和任意项级数,其中任意项级数中包括交错级数等)、函数项级数[又包括幂级数、Fourier(傅立叶)级数;复变函数中的泰勒级数、Laurent(洛朗)级数]。无穷级数主要作用在于可以将具有无穷项的数列收敛成为函数或者逆向将一个函数展开为无穷级数,提供了一种新的逼近方式。这里需要说明的是,并不是所有的无穷级数都可以收敛成函数,需要“审敛”即判定其是否收敛。常见方法有比较法(包括极限形式的比较法),根值法,比值法等。数学专业则需要使用多达13种方法判断其是否收敛。
导数的概念
在学习导数的概念之前,我们先来讨论一下物理学中变速直线运动的瞬时速度的问题。
例:设一质点沿x轴运动时,其位置x是时间t的函数,y=f(x) ,求质点在t0的瞬时速度?

我们知道时间从t0有增量△t时,质点的位置有增量

这就是质点在时间段△t的位移。因此,在此段时间内质点
的平均速度为;
若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度。
我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t0时的瞬时速度,

即:质点在t0时的瞬时速度=为此就产生了导数的定义,如下:
导数的定义
设函数y=f(x)在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地
函数有增量

若△y与△x之比当△x→0时极限存在,则称这个极限值为y=f(x)在x0处的导数。

记为:还可记为:
函数f(x)在点x0处存在导数简称函数f(x)
在点x0处可导,否则不可导。
若函数f(x)在区间(a,b)内每一点都可导,就称函数f(x)在区间(a,b)内可导。这时函数y=f(x)对于区
间(a,b)内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,
我们就称这个函数为原来函数y=f(x)的导函数。
注:导数也就是差商的极限
左、右导数
前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的概念。

若极限存在,我们就称它为函数y=f(x)在x=x0处的左导数。

若极限存在,我们就称它为函数y=f(x)在x=x0处的右导数。
注:函数y=f(x)在x0处的左右导数存在且相等是函数y=f(x)在x0处的可导的充分必要条件

‘柒’ 大学高数学什么

高数也通常叫微积分,顾名思义,主要是学习导数,微分,积分,函数还有近似极限五部分,当然其中的联系很多,对照起来学习最好,是考研相当重点内容,而且在今后的学习中,不管文科或是理工科的大部分专业中的某些专业课程都需要用到函数、积分与导数的知识,比如会计专业的财务会计,国际贸易中的西方经济学,机械专业的各类力学(理论力学,材料力学,工程力学等等)都涉及到大量的导数与微积分的运算和公式。
关于具体教材,一般都是依学校而定的,各个高校可以用选用不同教材版本的权利,更有部分专业老师自己就有选用教材的权利。而且还有版本的问题,比喻说有些学校的库房里面上一版的教材还有很多存量,那么它可能从学校的角度出发,让学生使用老版教材。但这些都基本不影响,因为其中的内容大同小异,在教学中间老师都会说明。

‘捌’ 高等数学学什么

如果是自学,要求不太高,不要学什么数学分析,工科数学分析,比较难;数学分析一般是数学系的人学。
高等数学和线性代数一般学校是分开上。
高等数学的内容如下:
1.一元函数的极限和连续。理论证明比如ε-N,ε-X,ε-δ,不需学得深;夹逼定理和单调有界蛮重要的,一些等价代换要掌握;函数的连续性好好学,不难.
2.一元函数微分学.求导一定一定要学好,否则你学定积分就要痛苦了;微分的实质是求导;微分学基本定理,lagrange中值定理一定要好好学,证明题基本靠它;L'Hospital相当重要;泰勒公式证明题中常用.
3.一元函数积分学.变限函数好好学吧;分部积分法和换元积分法也好好学吧;这部分内容会有大量的应用题.
4.常微分方程.具体内容不说了,反正不难,但很烦很烦,把公式背背熟就可以了.
5.多元函数微分学.不止是多元,内容是多多了.复变函数出来了.
6.多元函数积分学.二重、三重积分出来了,涉及第一型曲线及曲面计算。
7.向量函数的积分。涉及第二型曲线和曲面的计算。
8.复变函数的积分。柯西积分定理是基础是重点,lz看着办吧。
9.常数项级数。
10.函数项级数。
lz,线形代数要学,否则高数后面的内容你会学得很费劲;但是,线形代数也是很烦的,因为内容实在太多了,但都不是很深,基本围绕三点:用矩阵解方程组、用矩阵解释二次型、特征值及其变换(正交变换很重要)。
希望能对lz所有帮助。

‘玖’ 高等数学是什么

高等数学就是高数微积分calculus。

不定积分结果不唯一求导验证应该能够提高凑微分的计算能力。。

,对数是logarithm的log或者LNX,Lg绝非ig,并非inx,不是logic缩写,反民科吧,恒等式π^a=exp(Ln(π^a))=e^(alnπ)。对不起打扰了唉。abs绝对值,sqrt开根号。

阅读全文

与高数学什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:748
乙酸乙酯化学式怎么算 浏览:1413
沈阳初中的数学是什么版本的 浏览:1367
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:896
数学c什么意思是什么意思是什么 浏览:1424
中考初中地理如何补 浏览:1314
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1404
如何回答地理是什么 浏览:1038
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1495
二年级上册数学框框怎么填 浏览:1715
西安瑞禧生物科技有限公司怎么样 浏览:1014
武大的分析化学怎么样 浏览:1257
ige电化学发光偏高怎么办 浏览:1346
学而思初中英语和语文怎么样 浏览:1671
下列哪个水飞蓟素化学结构 浏览:1433
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1073