1. 初中数学最难是什么
先是几何,然后代数,然后函数,都很难。
数学是一个研究数量,结构变化和空间模型等等的含义的一种科学方式,它是物理化学等科目的基础。而且和我们的日常生活有着很大的关联,所以说,学好数学对于我们每个人来说都是非常重要的。
初中数学学习方法推荐:
一、主动预习
预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
二、主动思考
很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。
主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法。
三、善于总结规律
解答数学问题总的讲是有规律可循的。
2. 考研数学中,数一数二数三哪个最难
数学考研网络网盘免费下载
链接: https://pan..com/s/1P2k1UAyKe6OoPfzxpfTiKg
针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三(2009年之前管理类为数学三,经济类为数学四,2009年之后大纲将数学三数学四合并)。具体不同专业所使用的试卷种类有具体规定。
3. 数学中什么最难
几何。(代数容易几何难,物理公式记不完。)
一些纯粹的几何证明题,如果找不到突破口,或找突破口很长时间,那就很难完成证明了,所以就显得难了。
但最难的是函数,数形结合。
说明:
数学包括了算术、代数、几何、函数、微积分等方面内容。
小学里的数学一般只是算术(正整数,正分数)和简单的代数,即一元一次方程,形如3x+3=6等。
几何内容很少,只是求一些几何体体积,表面积或平面图形周长,面积等等。
一般没什么难,考高分较为容易,但是要仔细。
初中数学难度逐渐增大。初中数学包含了算术(包括有理数与无理数运算)、代数、几何、函数。
代数有较复杂的一元一次方程,一元二次方程,二元一次方程组,一元一次不等式,一元一次不等式组,不等式稍难,一元二次方程较难,但不是很难,靠认真仔细。
几何从三角形到四边形到圆,逐渐变难,但学好它们并不难,认真仔细就可以吧?!
函数是初中数学及高中很大一块内容,是中考高考必考内容,比例相当大。包括一次函数,二次函数,反比例函数,三角函数等,都是重点,难点。
要多花点时间。
再复杂些的就是数形结合的数学题,往往将代数,几何等知识结合起来,故称数形结合。
如,每年每地区中考试卷中最后一道大题目就是数形结合的题目,占10-15分不等。是拉分的题目,因为有时有点难,计算运算的过程又有点烦,考试时想得满分是不容易的。要多花点时间研究研究。静下心来做题。
多练多做效果好。
中考数学难,在我看来关键是时间不够,来不及做。分数不高,所以做题目要讲点技巧,但还要准确率,这才有用。
高中数学就是函数还有其他空间几何等东西,到大学大概是微积分吧?。。
其实数学这门功课是最难的。数学学不好,死路一条,不是说学数学将来在生活上几乎没有什么作用,但在考试中很有用啊!嗯,数学分数高了,一般来讲,中考高考总分就高了。
其实数学最难的部分就是函数,数形结合。因为他们涉及的知识杂而多,解答过程繁琐而多,有时难以理解,相对几何而言,我想它们最难了吧!
最难的是函数,数形结合。
4. 考研数学一二三哪个最难
数一时最难的,数一主要考高等数学、概率论与数理统计、线性代数三门课!《高等数学》除了一部分*号外全考(82分),《线性代数》六章全考(34分),《概率论及数理统计》考到第八章第5节(第七章2、6、7节不考)(34分)!! 但是不是你想象中那么难,只要你好好花两个月的时间好好把李永乐全书看两遍,最后再结合做些真题,考个130还是问题不大的!大部分工科和理学都考的是数一!!
数二相对来说比数一简单,数二主要考高等数学、线性代数!《高等数学》(116分),《线性代数》考前第五章(34分)!注意不考概率论与数理统计!!主要是像生物方向、化学方向等一些方向的考数二!
数三考的内容和数一差不多,(《微积分》(82分),《线性代数》考前五章(34分),《概率论及数理统计》考到第七章第1节(34分) )但是难度数三就简单很多了!主要是面向经济管理类得考生!
数学一二三的差别其实并不只在难度上,更多的是体现在考试范围和侧重点的差别上。
数一、数二一般是理工类的,它们对高数的要求比较高。与数学二相比,数学三考试的范围要更广一些,像无穷级数,这方面数学二就不考,数学二还不考概率论与数理统计。从一元函数微积分的角度来讲,数学二是这三类数学中最难的。
范围的大小从很大程度上也决定了复习投入精力的多少,从这个角度来说,整体难度上:数一>数二>数三
5. 十大最难数学公式
一、圆的周长公式:
圆的周长等于π乘以圆的直径。也等于2倍π乘以圆的半径。(一般如果π未特别指定,则π=3.14)C:表示圆的周长;d:表示圆的直径;r:表示圆的半径。
二、傅里叶变换:
傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。
三、德布罗意方程组:
德布罗意相信粒子与波具有相同的特性(即在物质世界的量化描述中二者可以被视作是同一的),故他假设二者的效能是等同的:mc^2=hv'由于实际粒子并非以真空光速运动,故德布罗意用群速度v(velocity)乘相速度u代替c(light)的平方,得到mvu=hv'。
四、薛定谔方程:
薛定谔方程(Schrödinger equation),又称薛定谔波动方程(Schrodinger wave equation),是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定。
它是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。
五、质能方程:
质能方程即描述质量与能量之间的当量关系的方程。在经典物理学中,质量和能量是两个完全不同的概念,它们之间没有确定的当量关系,一定质量的物体可以具有不同的能量;能量概念也比较局限,力学中有动能、势能等。在狭义相对论中,能量概念有了推广,质量和能量有确定的当量关系,物体的质量为m,则相应的能量为 E=mc²。
六、勾股定理:
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
七、牛顿第二定律:
牛顿第二运动定律的常见表述是:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。该定律是由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的。牛顿第二运动定律和第一、第三定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。
八、欧拉公式:
复变函数中,e^(ix)=(cos x+isin x)称为欧拉公式,e是自然对数的底,i是虚数单位。拓扑学中,在任何一个规则球面地图上,用 R记区域个 数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,这就是欧拉定理,它于 1640年由 Descartes首先给出证明 ,后来 Euler(欧拉 )于 1752年又独立地给出证明 ,我们称其为欧拉定理 ,在国外也有人称其 为 Descartes定理。
九、麦克斯韦方程组:
麦克斯韦方程组,是英国物理学家詹姆斯·克拉克·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。
十、1+1:
是由德国数学家哥德巴赫提出的一个猜想(哥德巴赫猜想)任何一个≥6之偶数,都可以表示成两个奇质数之和;任何一个≥9之奇数,都可以表示成不超过三个的奇质数之和。
6. 高中数学最难的是哪一部分
高中数学最难的是函数部分。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。
函数的一些概念:
在一个变化过程中,发生变化的量叫变量(数学中,变量为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。
函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。
7. 数学系哪门课最难学
本科阶段最难的是实变函数,泛函分析一般是作为研究生课程开设的,本科阶段开设的话一般当作专业选修课。
拓扑学、抽象代数(近世代数)很多同学也认为比较难。这几门应该说是数学系在学完数学分析、高等代数的基础上(基础课程)的提升,算是高阶课程。适不适合读数学,看数学分析掌握的如何就略知一二了,如果数学分析的基础没有打好,后面的学习无异于痴人说梦。
怎么学好实变函数 :
要学好理论。以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。
它是微积分学的进一步发展,它的基础是点集论。所谓点集论,就是专门研究点所成的集合的性质的理论,也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。
实变函数论还要研究实变函数的分类问题、结构问题。实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。
8. 世界上最难的数学题是什么
现今世界上最难的数学题之一是哥德巴赫猜想。
从关于偶数的哥德巴赫猜想,可推出:任何一个大于7的奇数都能被表示成三个奇质数的和。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。
若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。2013年5月,巴黎高等师范学院研究员哈洛德·贺欧夫各特发表了两篇论文,宣布彻底证明了弱哥德巴赫猜想。
(8)数学什么最难扩展阅读:
华罗庚是中国最早从事哥德巴赫猜想的数学家。1936~1938年,他赴英留学,师从哈代研究数论,并开始研究哥德巴赫猜想,验证了对于几乎所有的偶数猜想。
1950年,华罗庚从美国回国,在中科院数学研究所组织数论研究讨论班,选择哥德巴赫猜想作为讨论的主题。参加讨论班的学生,例如王元、潘承洞和陈景润等在哥德巴赫猜想的证明上取得了相当好的成绩。
1956年,王元证明了“3+4”;同年,原苏联数学家阿·维诺格拉朵夫证明了“3+3”;1957年,王元又证明了“2+3”;潘承洞于1962年证明了“1+5”。
9. 高中数学那个部分是最难的
难点有的极限,解析几何,空间几何,复数。由于复数,还是空间几何最难。
对于高中数学怎么学来讲,找一个合适的学习方式还是很重要的。首先我们要做的就是培养一个良好的学习习惯,良好的学习习惯包括制定一个学习计划,在上课之前,自己先学习,上课的时候认真听课,上完课了也要其实巩固上刻的知识,课后认真做练习。
在高中这个阶段,孩子说小也不小说大也不大,就在这个年龄段,孩子不管干什么事都很急躁。对于这种情况,家长你也不要着急。我们只要多和孩子沟通,找出孩子学习不好的原因。
及时了解、掌握常用的数学思想和方法:
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
10. 老师觉得数学当中最难学的是什么说的浅显一点啊!
我自己做了家教这么多年,我觉得对于空间立体感比较弱的人来说,立体几何真的是很有难度。
立体几何很多都是需要做辅助线的,但是有些孩子的空间感很弱,他们很难在脑袋里把这个东西想象成立体形状的。在他们的世界里似乎只有平面、平面和平面。
好不容易把一道题讲会了,一样类型的题目,但就是把长方体转了个面,又不会了。所以在学习当中,举一反三的能力也是很重要的。当然,这需要无数的习题堆出来。