‘壹’ 什么是高等数学
高等数学简介
初等数学研究的是常量,高等数学研究的是变量。
高等数学是理、工科院校一门重要的基础学科。作为一一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性是数学最基本、最显着的特点--有了高度抽象和统一,我们才能深人地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深人地渗透到了社会科学领域。因此,学好高等数学对我们来说相当重要。然而,很多学生对怎样才能学好这门课程感到困惑。要想学好高等数学,至少要做到以下四点:
首先,理解概念。数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。
其次,掌握定理。定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。
第三,在弄懂例题的基础上作适量的习题。要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法法在理解例题的基础上作适量的习题。作题时要善于总结---- 不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。
第四,理清脉络。要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。
‘贰’ 高等数学是什么
通常认为,高等数学是将简单的微积分学,概率论与数理统计,以及深入的代数学,几何学,以及他们之间交叉所形成的一门基础学科,主要包括微积分学,其他方面各类课本略有差异。
初等数学研究的是常量与匀变量,高等数学研究的是不匀变量。其中极限的运算、无穷小量、一元微积分学、多元微积分学、无穷级数等等
‘叁’ 什么叫高等数学
高等数学简介
初等数学研究的是常量,高等数学研究的是变量。
高等数学是理、工科院校一门重要的基础学科。作为一一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性是数学最基本、最显着的特点--有了高度抽象和统一,我们才能深人地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深人地渗透到了社会科学领域。因此,学好高等数学对我们来说相当重要。然而,很多学生对怎样才能学好这门课程感到困惑。要想学好高等数学,至少要做到以下四点:
首先,理解概念。数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。
其次,掌握定理。定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。
第三,在弄懂例题的基础上作适量的习题。要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法法在理解例题的基础上作适量的习题。作题时要善于总结---- 不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。
第四,理清脉络。要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。
高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用.微积分的理论是由牛顿和莱布尼茨完成的.(当然在他们之前就已有微积分的应用,但不够系统)无穷小和极限的概念微积分的基本概念但理解有很大难度。
‘肆’ 什么是高等数学(详细点)
高等数学区别于初等数的特征在于:它是研究运动、变化、变量之间依赖关系的学问,所有的东西都在动、在变化。
比如定积分,函数的值在不断地变化,所以函数图像下方面积不在能用简单的长乘以宽来计算,必须切成小条,再用小矩形近似计算。
微分更是如此,常量的导数是0,没什么可以研究的。变化的量导数非平凡,值得研究。
线性代数的一个主要目的是研究欧式空间到自身的线性变换,矩阵的各种分解都对应了这些变换中的不变量。虽说是不变量,但总是在研究变化、运动中,才会关心不变的东西。
概率论是在微积分、线性代数的确定函数关系中加入了不确定性(随机扰动)。随机性主要由随机变量来模拟。其实也是研究带概率的样本空间到实数域上的映射,这也是变化着的对应关系。
统计是为了从样本观测中找出随机变量的分布。有了分布,就可以用概率论工具来计算我们所关心的各种概率了。由于样本是变量,所以统计也算是在研究变化的东西。
‘伍’ 高数学的是什么
高中数学公式口诀数学必修11.集合2.函数概念与基本初等函数I数学必修21.立体几何初步2.平面解析几何初步数学必修31.算法初步2.统计3.概率数学必修41.三角函数2.平面向量3.三角恒等变换数学必修51.解三角形2.数列3.不等式选修2-11.常用逻辑用语2.圆锥曲线与方程3.空间向量与立体几何选修2-21.导数及其应用2.推理与证明3.数系的扩充与复数的引入选修2-31.计数原理2.统计与概率选修3-1数学史选修3-2信息安全与密码选修3-3球面上的几何选修3-4对称与群选修3-5欧拉公式与闭曲面分类选修3-6三等分角与数域扩充选修4-1几何证明选讲选修4-2矩阵与变换选修4-3数列与差分选修4-4坐标系与参数方程选修4-5不等式选讲选修4-6初等数论初步选修4-7优选法与试验设计初步选修4-8统筹法与图论初步选修4-9风险与决策选修4-10开关电路与布尔代数课程大纲意义一、正确地理解概念二、对不同的概念,要采取不同的方法三、在新旧概念之间掌握概念高中数学公式口诀数学必修11.集合2.函数概念与基本初等函数I数学必修21.立体几何初步2.平面解析几何初步数学必修31.算法初步2.统计3.概率数学必修41.三角函数2.平面向量3.三角恒等变换数学必修51.解三角形2.数列3.不等式选修2-11.常用逻辑用语2.圆锥曲线与方程3.空间向量与立体几何选修2-21.导数及其应用2.推理与证明3.数系的扩充与复数的引入选修2-31.计数原理2.统计与概率选修3-1数学史选修3-2信息安全与密码选修3-3球面上的几何选修3-4对称与群选修3-5欧拉公式与闭曲面分类选修3-6三等分角与数域扩充选修4-1几何证明选讲选修4-2矩阵与变换选修4-3数列与差分选修4-4坐标系与参数方程选修4-5不等式选讲选修4-6初等数论初步选修4-7优选法与试验设计初步选修4-8统筹法与图论初步选修4-9风险与决策选修4-10开关电路与布尔代数课程大纲意义一、正确地理解概念二、对不同的概念,要采取不同的方法三、在新旧概念之间掌握概念
‘陆’ 谁知道什么是高等数学
高等数学有狭义和广义之分。狭义的高等数学就是普通高等院校非数学专业的一门数学课程。高等数学的内容:一元函数及多元函数的微积分、级数、微分方程。此外,还有非常简单的解析几何。与之相对应的还有工程数学。大致包括线性代数,概率论与数理统计。数值分析,这几部分内容基本上每个院校都学,还有最优化方法。小波分析、图论等有的学校开设,还有一些例如矩阵分析等各个院校根据自己的需要开设。广义的说,高等数学就是除中小学意外的数学。但这种叫法一般不常用。常用的是狭义的说法。]
‘柒’ 高等数学是什么怎样学懂
高等数学是将简单的微积分学,概率论与数理统计,以及深入的代数学,几何学,以及他们之间交叉所形成的一门基础学科。
高等数学中包括微积分和立体解析几何,级数和常微分方程。
一般大学的课程教材包括:高等数学上下册,线性代数,概率论,工科可能还涉及到工程数学矢量分析和场论等。
学习没有捷径,读书吧,朋友。
‘捌’ 高等数学是什么样的
高等数学,主要讲微积分、线性代数、和概率论。
微积分
主要讲
微分
积分
求导
求极限
微分方程
曲线曲面积分
无穷级数以及相关应用
线性代数
主要讲
向量
及向量的运算
由向量拓展到
N为空间
和
矩阵,接着讲了矩阵的各种性质
概率论
主要讲
概率计算,这有点像排列组合,然后讲
概率分布
及
统计学知识以及一些实验上的应用
都比较有用,是各门专业课的基础
‘玖’ 高等数学是什么
高等数学就是高数微积分calculus。
不定积分结果不唯一求导验证应该能够提高凑微分的计算能力。。
,对数是logarithm的log或者LNX,Lg绝非ig,并非inx,不是logic缩写,反民科吧,恒等式π^a=exp(Ln(π^a))=e^(alnπ)。对不起打扰了唉。abs绝对值,sqrt开根号。
‘拾’ 高等数学是什么 我怎么学
高等数学是比初等数学“高等”的数学。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为小学初中的初等数学与本科阶段的高等数学的过渡。通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科,主要内容包括:极限、微积分、空间解析几何与向量代数、级数、常微分方程。一般以微积分学和级数理论为主,其他方面的内容为辅,各种课本中略有差异。
高数学习建议
高等数学与高中数学相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是无限分割逐步逼近,极限等;从形式上讲,学习方式也很不一样,特别是一般都是大班授课,进度快,老师很难个别辅导,故对自学能力的要求很高。具体的学习方法因人而异,但有些基本的规律大家都得遵守。我具体说一下列在下面:
1。书:课本+习题集(必备),因为学好数学绝对离不开多做题(跟高中有点像,呵呵);建议习题集最好有本跟考研有关的,这样也有利于你将来可能的考研准备。
2。笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,
可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。
3。上课:建议最好预习后听听。(其实我是从来不听课的,除非习题课),听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但remember,高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。
4。学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,小弟你既要有形象的对它们的
理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。
基本网络就是上面说的笔记上的总结的知识提纲,也要重视。
基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的。
题型都明白了,比如各种极限的求法。
好了,这些都做到了,高数应该学得不会差了,至少应付考试没问题。如果你想提高些,可以做些考研的数学题,体会一下,其实也不过如此
还可以看些关于高数应用的书,其实数学本来就是从应用中来的,你会知道真的很有用(不知你学的什么专业)
最后再说说怎么提高理解能力的问题(一家之言)
1。举例具体化。如理解导数时,自己也举个例子,如f(x)=820302X2+811211(x的平方)。
2。比喻形象化。就是打比方,比如把一个二元函数的图形想成邻家女孩的头上的草帽。
3。类比初级化。比如把二元函数跟一元函数类比,泰勒公式想成二次函数,好理解。
4。多书参考法。去你们图书管借几本不是一个作者写的高数教材,虽然讲的内容都一样,但不同的作者往往对同一个问题从不同的角度表述,对你来说,从很多不同的角度、例子理解同一个问题,往往就容易多了。Just have a try!
5。不懂暂跳法。对一些定理的证明、推导过程等,如果一时不明白没关系,暂时放过,记下这个疑点待以后解决就可以了。
说了这么多也不知哪些对你有用,对了,还有要不耻上问,问同学老师都行,弄会才是目的。如有什么问题,给我留言。
另外对于你即将要学习的线性代数,则必须树立一个良好的学习态度,在这里的内容相对高数而言比较抽象,有必要多花些时间,而且在这阶段的学习里正是锻炼你的抽象思维和逻辑思维的好时机,对你以后的专业学习是大为有帮助,希望能够好好的把握。
而对于概率与统计,就更注重实际,偏于计算,对于一些数论里的知识和一些数学理论要有个很熟练的把握,而且它也是更贴近你专业的一门数学。
总之,要学好大学数学,最重要的是打好前基础。
(竭力为您解答,希望给予【好评】,非常感谢~~)