导航:首页 > 数字科学 > 数学系学什么

数学系学什么

发布时间:2022-04-18 17:04:00

㈠ 大学数学系到底学些什么课程

大学数学系主干课程包括数学分析、高等代数、解析几何、微分几何、高等几何、常微分方程、偏微分方程、概率论与数理统计、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑学、模糊数学。师范类还要学习数学教育学等。

㈡ 数学系要学哪些专业课程

数学专业的专业课程有:

一、数学分析

又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。

数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

二、高等代数

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

三、复变函数论

复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。

复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。

四、抽象代数

抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用“群”的概念彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出“群”的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。

五、近世代数

近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。

法国数学家伽罗瓦在1832年运用“群”的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出“群”的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

参考资料来源:

网络—数学分析

网络—高等代数

网络—复变函数论

网络—抽象代数

网络—近世代数

㈢ 数学专业有哪些专业课程

数学专业的专业课程有:

一、数学分析

又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。

数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

二、高等代数

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

三、复变函数论

复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。

复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。

四、抽象代数

抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用“群”的概念彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出“群”的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。

五、近世代数

近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。

法国数学家伽罗瓦在1832年运用“群”的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出“群”的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

参考资料来源:

网络—数学分析

网络—高等代数

网络—复变函数论

网络—抽象代数

网络—近世代数

㈣ 数学系的要学些什么内容

数学类主要有三个专业,数学专业,数学与应用数学专业,信息与计算科学专业

数学专业主要就是研究纯粹的数学,在绝大多数人看来应当说是相当枯燥的,但是在像陈景润,华罗庚之类的人看来却是相当有趣的,呵呵

数学与应用数学

专业介绍
业务培养目标:

业务培养目标:本专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。

业务培养要求:本专业学生主要学习数学和应用数学的基础理论、基本方法,受到数学模型、计算机和数学软件方面的基本训练,具有较好的科学素养,初步具备科学研究、教学、解决实际问题及开发软件等方面的基本能力。�

毕业生应获得以下几方面的知识和能力:�

1.具有扎实的数学基础,受到比较严格的科学思维训练,初步掌握数学科学的思想方法;�

2.具有应用数学知识去解决实际问题,特别是建立数学模型的初步能力,了解某一应用领域的基本知识;�

3.能熟练使用计算机(包括常用语言、工具及一些数学软件),具有编写简单应用程序的能力;�

4.了解国家科学技术等有关政策和法规;�

5.了解数学科学的某些新发展和应用前景;�

6.有较强的语言表达能力,掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法,具有一定的科学研究和教学能力。

信息与计算科学

专业介绍
业务培养目标:

业务培养目标:本专业培养具有良好的数学知识,掌握信息科学和计算科学的基本理论和方法,受到科学研究的初步训练,能运用所学知识和熟练的计算机技能解决实际问题,能在科技、教育和经济部门从事研究、教学和应用开发和管理工作的高级专门人才。

业务培养要求:本专业学生主要学习信息科学和计算科学的基本理论、基本知识和基本方法,打好数学基础,受到较扎实的计算机训练,初步具备在信息科学与计算科学领域从事科学研究、解决实际问题及设计开发有关软件的能力。

毕业生应获得以下几方面的知识和能力:

1.具有扎实的数学基础,掌握信息科学和计算科学的基本理论和基本知识;

2.能熟练使用计算机(包括常用语言、工具及一些专用软件),具有基本的算法分析、设计能力和较强的编程能力;

3.了解某个应用领域,能运用所学的理论、方法和技能解决某些科研或生产中的实际课题;

4.对信息科学与计算科学理论、技术及应用的新发展有所了解;

5.掌握文献检索、资料查询的基本方法,具有一定的科学研究和软件开发能力。

后两个专业其实学习的内容已经与软件工程专业差不多了,只不过侧重点略有不同,毕业后也可以到IT企业担任软件工程师等

数学专业需要学习的一些内容,诸如高等数学,离散数学,组合数学,图论等等,想起来就头皮发麻,对于女生......如果不是极其喜欢数学专业最好还是不要报考

数学可以说是最古老的自然科学学科,早在19实际数学就几乎达到了发展的瓶颈,在整个20世纪几乎没特别有重大的数学成就,也不认为数学专业今后会有多大的发展空间
数学专业的毕业生主要还是到科研机构,学校,或者到IT企业就业,随着独生子女政策的成果越来越明显,中国目前对老师的需求量实际已经有所下降,而IT业近几年发展过于迅速,低端人才已经趋紧饱和,如果你在软件方面不具备足够高的水准,也难以到IT企业就业,而科研机构对人员的需求向来比较少

如果你想找不对口的工作,恐怕也很难竞争过专业对口的毕业生吧

综上,个人不认为数学专业是一个足够理想的选择

㈤ 大学数学系学什么

其实大学数学系教的东西大同小异,来来去去就是这么些课。
以北大数学系为例:首先肯定是数学分析(公共基础课),然后就是高等代数,几何学,抽象代数,复变函数,ODE,数学模型,概率论,数理统计,实变函数,泛函分析,PDE,拓扑,微分几何,微分流形,数论,群表示,代数几何(这门课985的数院肯定开,非985据我了解开的比较少,代几比较偏研究生课程那一块了,算是体谅学生的感受吧)。
以上是数学的专业必修课。
不过数院一般会要求学生在选修课里面选一点物理,比如北大会叫学生在选修的时候自选8学分的物理课。

㈥ 大学数学系,要学哪些专业课程

数学专业分为两种,师范类和非师范类的,其中师范类必修,(还包含教育学,获取教师资格证的必要条件),非师范类选修,(但有的院校不开这门课),取绝于所报的院校。
数学系专业必修课程,主要包括:高等代数,数学分析,常微分方程,复变函数,解析几学,拓扑学,实变函数,概率,数理统计等,这些课程主要是大一大二修,,学校不同,开设的略有不同。师范类还设中学数学方法论,中学数学竞赛,选修的有组合数学,数学软件,小波分析,微分流形,偏微分方程,数学史等

㈦ 数学类专业都学些什么

专业课有:大概两个方向,分析和代数。
数学分析,实变函数,复变函数,常微分方程,偏微分方程,泛函分析,概率论,抽象函数
高等代数,解析几何,抽象代数,微分几何,拓扑,图论,组合论,有限群表示论,李代数
等等

㈧ 大学数学系主要学哪些数学课程啊!

数学系专业必修课程,主要包括:高等代数,数学分析,常微分方程,复变函数,解析几学,拓扑学,实变函数,概率,数理统计等,这些课程主要是大一大二修,,学校不同,开设的略有不同。师范类还设中学数学教学法,教育学、心理学;选修的有组合数学,数学软件,小波分析,微分流形,偏微分方程,数学史等

阅读全文

与数学系学什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:748
乙酸乙酯化学式怎么算 浏览:1413
沈阳初中的数学是什么版本的 浏览:1367
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:896
数学c什么意思是什么意思是什么 浏览:1424
中考初中地理如何补 浏览:1314
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1404
如何回答地理是什么 浏览:1038
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1495
二年级上册数学框框怎么填 浏览:1715
西安瑞禧生物科技有限公司怎么样 浏览:1014
武大的分析化学怎么样 浏览:1257
ige电化学发光偏高怎么办 浏览:1346
学而思初中英语和语文怎么样 浏览:1671
下列哪个水飞蓟素化学结构 浏览:1433
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1073