① 高数学什么
大一先学函数极限,导数微分,积分包括定积分,不定积分,然后就是微分方程,还要学空间几何向量,多重积分,级数。。。基本上就这些,,还有就是在大二的时候学复变函数,矩阵,概率论!!基本上把我在大学里学了数学有关的科目都说了,,希望对你想了解大学数学有帮助,,如果满意,,请采纳一下 ,我在做任务,,谢谢了
② 高数主要学习些什么
2020年春季学期微课徐世松高等数学(超清视频)网络网盘
链接: https://pan..com/s/1qUNZZW_DHwJHP8kDpvZ-zg
若资源有问题欢迎追问~
③ 高数内容有哪些
高数主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
高数的特点
作为一门基础科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显着的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。
严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。
无穷进入数学,这是高等数学的又一特征。现实世界的各种事物都以有限的形式出现,无穷是对他们的共同本质的一种概括。所以,无穷进入数学是数学高度理论化、抽象化的反映。数学中的无穷以潜无穷和实无穷两种形式出现。
以上内容参考:网络-高等数学
④ 高等数学包括哪些内容
主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。是工科、理科、财经类研究生考试的基础科目。
指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
(4)高等数学学什么扩展阅读
初级数学的基本内容
一、小学
整数、分数和小学的四则运算、数与代数、空间与图形、简单统计与可能性、一元一次方程,圆,正负数,立体几何初步。
二、初中
代数部分: 有理数(正数和负数及其运算),实数(根式的运算),平面直角坐标系,基本函数(一次函数,二次函数,反比例函数),简单统计,锐角三角函数,方程、(一元一次方程,二元一次方程组,一元二次方程,三元一次方程组),因式分解、整式、分式、一元一次不等式。
几何部分:全等三角形,四边形(重点是平行四边形及特殊的平行四边形),对称与旋转,相似图形(重点是相似三角形),圆的基本性质,
三、高中
集合,基本初等函数(指数函数、对数函数,幂函数,高次函数),二次函数根分布与不等式,柯西不等式,排列不等式,初等行列式,三角函数,解析几何与圆锥曲线(椭圆,抛物线,双曲线),复数,数列,高等统计与概率,排列组合,平面向量,空间向量,空间直角坐标系,导数以及相对简单的定积分。
⑤ 高等数学包含哪些内容,有哪些科目
内容包含:
一、 函数与极限
二、导数与微分
三、导数的应用
四、不定积分
五、定积分及其应用
六、空间解析几何
七、多元函数的微分学
八、多元函数积分学
九、常微分方程
十、无穷级数
主要包括的科目有:微积分,数理统计等。
其实,高中就有涉及,高数只是深化了一些。
⑥ 什么是高等数学
高等数学是由微积分学、代数学、几何学以及它们之间的交叉内容所形成的一门基础学科,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。 其主要内容包括数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程,也是工科、理科、财经类研究生考试的基础科目。