导航:首页 > 数字科学 > 数学复数是什么意思

数学复数是什么意思

发布时间:2022-04-19 11:41:36

‘壹’ 数学里复数,实数和有理数是什么意思

1、复数

把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。

2、实数

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

3、有理数

有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。

(1)数学复数是什么意思扩展阅读:

有理数的认识:

有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。

有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。

有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

‘贰’ 小学中数学的复数是指

意思如下:

复数其实是实数和虚数的统称。小学数学中复数是指双数,对应的是单数。复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。数学是研究数量、结构、变化、空间以及信息等概念的一门学科。

简介:

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。

‘叁’ 数学单数和复数有什么不同

在数学概念中,“单数”和“复数”的定义有很大的不同。

在数学上,单数的定义为:

数学上指正的奇数,如 1、 3、 5、 7、 9等数。在数学中单数与双数(正的偶数)相对,可以表示为形如2n+1的数(n为大于等于0的整数)。

在数学上,复数的定义为:

形如 z=a+bi(a、b均为实数)的数称为复数。其中,a 称为实部,b 称为虚部,i 称为虚数单位。

‘肆’ 复数是什么意思

一个是单数对应的复数。
另一个是数学里的。简单来说,对一个小于0的数进行开根,得到的就是复数

‘伍’ 数学中的复数怎么理解

复数是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位(即-1开根)。 由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。 复数有多种表示法,诸如向量表示、三角表示,指数表示等。它满足四则运算等性质。它是复变函数论、解析数论、傅里叶分析、分形、流体力学、相对论、量子力学等学科中最基础的对象和工具。 复数的定义
数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解。因此将数集再次扩充,达到复数范围。
我们定义,形如z=a+bi的数称为复数,其中规定i为虚数单位,且i^2=i*i=-1(a与b是任意实数)
我们将复数z=a+bi中的实数a称为虚数z的实部(real part)记作Rez=a
实数b称为虚数z的虚部(imaginary part)记作 Imz=b.
易知:当b=0时,z=a+ib=a+0,这时复数成为实数;
当a=0时z=a+bi=0+bi我们就将其称为纯虚数。
设z=a+bi是一个复数,则称复数z‘=a-bi为z的共轭复数。
定义:复数的模(绝对值)=√(a^2+b^2)(定义原因见下述内容)
复数的集合用C表示,显然,R∩C=R(即R是C的真子集)
复数(代数式)的四则运算:

(a+bi)+(c+di)=(a+c)+(b+d)i,
(a+bi)-(c+di)=(a-c)+(b-d)i,
(a+bi)�6�1(c+di)=(ac-bd)+(bc+ad)i,
(c与d不同时为零)
(a+bi)÷(c+di)=[(ac+bd) / (c^2+d^2)]+[(bc-ad) / (c^2+d^2)] i,
(c+di)不等于0
复数的其他表达
复数有多种表示形式,常用形式z=a+bi 叫做代数形式。
下面介绍另外几种复数的表达形式。
①几何形式。
在直角坐标系中,以x为实轴,y为虚轴,O为原点形成的坐标系叫做复平面(见本词条附图)
这样所有复数都可以复平面上的点表示被唯一确定
复数z=a+bi 用复平面上的点 z(a,b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。
②向量形式。复数z=a+bi用一个以原点O为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数的加、减法运算得到恰当的几何解释。
③三角形式。复数z=a+bi化为三角形式
z=r(cosθ+sinθi)
式中r= sqrt(a^2+b^2),叫做复数的模(即绝对值);θ 是以x轴为始边;向量OZ为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。
④指数形式。将复数的三角形式z=r( cosθ+isinθ)中的cosθ+isinθ换为 exp(iθ),复数就表为指数形式z=rexp(iθ)
复数三角形式的运算:
设复数z1、z2的三角形式分别为r1(cosθ1+isinθ1)和r2(cosθ2+isinθ2),那么z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]
z1÷z2=r1÷r2[cos(θ1-θ2)+isin(θ1-θ2)],若复数z的三角形式为r(cosθ+isinθ),那么z^n=r^n(cosnθ+isinnθ),n√z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=1,2,3……)必须记住:z的n次方根是n个复数。
复数的乘、除、乘方、开方可以按照幂的运算法则进行。复数集不同于实数集的几个特点是:开方运算永远可行;一元n次复系数方程总有n个根(重根按重数计);复数不能建立大小顺序。
复数中的重要定理:迪莫佛定理(De Morie's Theorem)
若有一复数z=cosθ+isinθ,则 z^n=cos(nθ)+isin(nθ)
若z^n=a, 则z=n√a[cos(2kπ/n)+isin(2kπ/n)] ,n∈N ,n=1,2,3.....(n-1)

‘陆’ 数学中“复数”是什么意思

复数:形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。

当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。

最早有关负数方根的文献出于公元1世纪希腊数学家希罗,他考虑的是平顶金字塔不可能问题。16世纪意大利数学家(请参看塔塔利亚和卡尔达诺)得出一元三次和四次方程的根的表达式,并发现即使只考虑实数根,仍不可避免面对负数方根。17世纪笛卡尔称负数方根为虚数,“子虚乌有的数”,表达对此的无奈和不忿。18世纪初棣莫弗及欧拉大力推动复数的接受。

(6)数学复数是什么意思扩展阅读:

复数应用-系统分析

在系统分析中,系统常常通过拉普拉斯变换从时域变换到频域。因此可在复平面上分析系统的极点和零点。分析系统稳定性的根轨迹法、奈奎斯特图法(Nyquist plot)和尼科尔斯图法(Nichols plot)都是在复平面上进行的。

无论系统极点和零点在左半平面还是右半平面,根轨迹法都很重要。如果系统极点

位于右半平面,则因果系统不稳定; 都位于左半平面,则因果系统稳定; 位于虚轴上,则系统为临界稳定的。如果系统的全部零点和极点都在左半平面,则这是个最小相位系统。如果系统的极点和零点关于虚轴对称,则这是全通系统。

‘柒’ 什么是数学中的复数

数学中规定

:若
x^2=-1,则有x=+-根号(-1)=+-i,
也就是

i^2=-1,
这样的一些数,它们的运算与实数一样,就称为复数。

‘捌’ 在数学中什么叫复数

复数是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位(即-1开根)

‘玖’ 高中数学什么是复数,纯虚数,共轭复数

复数是形如z=a+bi(a,b均为实数)的数,其中a称为实部,b称为虚部,i称为虚数单位。

纯复数是复数的一种,即复数是由纯复数与非纯复数构成。复数的基本形式为a+bi。其中a和b为实数,i为虚数单位,其平方为-1。

共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数。

(9)数学复数是什么意思扩展阅读

高中数学复数运算法则:

1、加法法则

复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的和是(a+bi)+(c+di)=(a+c)+(b+d)i.两个复数的和依然是复数,它的实部是原来两个复数实部的和,虚部是原来两个虚部的和。

复数的加法满足交换律和结合律,即对任意复数z1,z2,z3,有:z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。

2、减法法则

复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的差是(a+bi)-(c+di)=(a-c)+(b-d)i.两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。

阅读全文

与数学复数是什么意思相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:748
乙酸乙酯化学式怎么算 浏览:1413
沈阳初中的数学是什么版本的 浏览:1367
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:896
数学c什么意思是什么意思是什么 浏览:1424
中考初中地理如何补 浏览:1314
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1404
如何回答地理是什么 浏览:1038
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1495
二年级上册数学框框怎么填 浏览:1715
西安瑞禧生物科技有限公司怎么样 浏览:1014
武大的分析化学怎么样 浏览:1257
ige电化学发光偏高怎么办 浏览:1346
学而思初中英语和语文怎么样 浏览:1671
下列哪个水飞蓟素化学结构 浏览:1433
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1073