‘壹’ 数学史是什么
数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。
‘贰’ 数学史是什么
数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。
‘叁’ 数学史是什么
数学史是古代科学家们通过不断的实验和总结而逐渐演变成现代数学的一个漫长的过程。
‘肆’ 什么是数学史话
自古以来,人们的日常生活和所从事的许多领域,都离不开数值计算,并且随着人类社会的进步,对计算的速度和精确程度的需要愈来愈高,这就促进了计算技术的不断发展。印度阿拉伯记数法、十进小数和对数是文艺复兴时期计算技术的三大发明,它们是近代数学得以产生和发展的重要条件。其中对数的发现,曾被18世纪法国大数学家、天文学家拉普拉斯评价为“用缩短计算时间延长了天文学家的寿命”。
对数思想的萌芽
对数的基本思想可以追溯到古希腊时代。早在公元前500年,阿基米德就研究过几个10的连乘积与10的个数之间的关系,用现在的表达形式来说,就是研究了这样两个数列:1,10,102,103,104,105,……;0,1,2,3,4,5,……
他发现了它们之间有某种对应关系。利用这种对应可以用第二个数列的加减关系来代替第一个数列的乘除关系。阿基米德虽然发现了这一规律,但他却没有把这项工作继续下去,失去了对数破土而出的机会。
2000年后,一位德国数学家对对数的产生作出了实质性贡献,他就是史蒂非。1514年,史蒂非重新研究了阿基米德的发现,他写出两个数列:0 1 2 3 4 5 6 7 8 9 10 11……;1 2 4 8 16 32 64 128 256 512 1024 2048……
他发现,上一排数之间的加、减运算结果与下一排数之间的乘、除运算结果有一种对应关系,例如,上一排中的两个数2、5之和为7,下一排对应的两个数4、32之积128正好就是2的7次方。实际上,用后来的话说,下一列数以2为底的对数就是上一列数,并且史蒂非还知道,下一列数的乘法、除法运算,可以转化为上一列数的加法、减法运算。例如,23×25=23+5,等等。
就在史蒂非悉心研究这一发现的时候,他遇到了困难。由于当时指数概念尚未完善,分数指数还没有认识,面对像17×63,1025÷33等情况就感到束手无策了。在这种情况下,史蒂非无法继续深入研究下去,只好停止了这一工作。但他的发现为对数的产生奠定了基础。
纳皮尔的功绩
15、16世纪,天文学得到了较快的发展。为了计算星球的轨道和研究星球之间的位置关系,需要对很多的数据进行乘、除、乘方和开方运算。由于数字太大,为了得到一个结果,常常需要运算几个月的时间。繁难的计算苦恼着科学家,能否找到一种简便的计算方法?数学家们在探索、在思考。如果能用简单的加减运算来代替复杂的乘除运算那就太好了!这一梦想终于被英国数学家纳皮尔实现了。
纳皮尔于1550年生于苏格兰的爱丁堡。他家是苏格兰的贵族,他13岁入圣安德卢斯大学学习,后来留学欧洲,1571年回到家乡。纳皮尔是一位地主,他曾在自己的田地里进行肥料施肥试验,研究过饲料的配合,还设计制造过抽水机。他的兴趣十分广泛,一方面热衷于政治和宗教斗争,一方面投身于数学研究。他在球面三角学的研究中有一系列突出的成果。
纳皮尔研究对数的最初目的,就是为了简化天文问题的球面三角的计算,他也是受了等比数列的项和等差数列的项之间的对应关系的启发。纳皮尔在两组数中建立了这样一种对应关系:当第一组数按等差数列增加时,第二组数按等比数列减少。于是,后一组数中每两个数之间的乘积关系与前一组数中对应的两个数的和,建立起了一种简单的关系,从而可以将乘法归结为加法运算。在此基础上,纳皮尔借助运动概念与连续的几何量的结合继续研究。
纳皮尔画了两条线段,设AB是一条定线段,CD是给定的射线,令点P从A出发,沿AB变速运动,速度跟它与B的距离成比例地递减。同时,令点Q从C出发,沿CD作匀速运动,速度等于P出发时的值,纳皮尔发现此时P、Q运动距离有种对应关系,他就把可变动的距离CQ称为距离PB的对数。
当时,还没有完善的指数概念,也没有指数符号,因而实际上也没有“底”的概念,他把对数称为人造的数。对数这个词是纳皮尔创造的,原意为“比的数”。 他研究对数用了20多年时间,1614年,他出版了名为《奇妙的对数定理说明书》的着作,发表了他关于对数的讨论,并包含了一个正弦对数表。
有趣的是同一时刻瑞士的一个钟表匠比尔吉也独立发现了对数,他用了8年时间编出了世界上最早的对数表,但他长期不发表它。直到1620年,在开普勒的恳求下才发表出来,这时纳皮尔的对数已闻名全欧洲了。
对数的完善
纳皮尔的对数着作引起了广泛的注意,伦敦的一位数学家布里格斯于1616年专程到爱丁堡看望纳皮尔,建议把对数作一些改进,使1的对数为0,10的对数为1等等,这样计算起来更简便,也将更为有用。次年纳皮尔去世,布里格斯独立完成了这一改进,就产生了使用至今的常用对数。1617年,布里格斯发表了第一张常用对数表。1620年,哥莱斯哈姆学院教授甘特试作了对数尺。
当时,人们并没有把对数定义为幂指数,直到17世纪末才有人认识到对数可以这样来定义。1742年,威廉斯把对数定义为指数并进行系统叙述。现在人们定义对数时,都借助于指数,并由指数的运算法则推导出对数运算法则。可在数学发展史上,对数的发现却早于指数,这是数学史上的珍闻。
解析几何与微积分出现以后,人们在研究曲线下的面积时,发现了面积与对数的联系。比如,圣文森特的格雷果里在研究双曲线xy=1下的面积时,发现面积函数很像一个对数,后来他的学生沙拉萨第一个把面积解释为对数。但当时并没有认识到对数和双曲线下面积之间的确切关系,更没有认识到自然对数就是以e为底的对数。
后来,牛顿也研究过此类问题。欧拉在1748年引入了以a为底的x的对数logax这一表示形式,以作为满足ay=x的指数y。并对指数函数和对数函数作了深入研究。而复变函数的建立,使人们对对数有了更彻底的了解。
天文学家的欣喜
对数的出现引起了很大的反响,不到一个世纪,几乎传遍世界,成为不可缺少的计算工具。其简便算法,对当时的世界贸易和天文学中大量繁难计算的简化,起了重要作用,尤其是天文学家几乎是以狂喜的心情来接受这一发现的。1648年,波兰传教士穆尼阁把对数传到中国。
在计算机出现以前,对数是十分重要的简便计算技术,曾得到广泛的应用。对数计算尺几乎成了工程技术人员、科研工作者离不了的计算工具。直到20世纪发明了计算机后,对数的作用才为之所替代。但是,经过几代数学家的耕耘,对数的意义不再仅仅是一种计算技术,而且找到了它与许多数学领域之间千丝万缕的联系,对数作为数学的一个基础内容,表现出极其广泛的应用。
1971年,尼加拉瓜发行了一套邮票,尊崇世界上“十个最重要的数学公式”。每张邮票以显着位置标出一个公式并配以例证,其反面还用西班牙文对公式的重要性作简短说明。有一张邮票是显示纳皮尔发现的对数。
对数、解析几何和微积分被公认是17世纪数学的三大重要成就,恩格斯赞誉它们是“最重要的数学方法”。伽利略甚至说:“给我空间、时间及对数,我即可创造一个宇宙。”
‘伍’ 数学史对数学教育意义有什么意义
数学史既属史学领域,又属数学科学领域,因此数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段;
在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是“古”与“今”间的一种联系。
数学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。
通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
(5)数学史是什么扩展阅读:
数学史的研究范围:
按研究的范围又可分为内史和外史:
1、内史:从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;
2、外史:从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。
数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。
从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。
从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。
‘陆’ 数学史对我们从事小学教育的人有什么意义
数学史既属史学领域,又属数学科学领域,因此数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段;
在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是“古”与“今”间的一种联系。
数学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。
通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
(6)数学史是什么扩展阅读:
数学史的研究范围:
按研究的范围又可分为内史和外史:
1、内史:从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;
2、外史:从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。
数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。
从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。
从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。
‘柒’ 数学史的意义是什么
数学史是研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。它所研究的内容是:
1,数学史研究方法论问题;2,总的学科发展史 ── 数学史通史;3,数学各分支的分科史(包括细小分支的历史) ;4, 不同国家、民族、地区的数学史及其比较 ;5, 不同时期的断代数学史 ;6, 数学家传记 ;7, 数学思想、数学概念、数学方法发展的历史;8,数学发展与其他科学、社会现象之间的关系;9,数学教育史;10,数学史文献学;等
(一)科学意义及作用
每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则。
(二)文化意义及作用
“数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说”。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。
(三)教育意义及作用
当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。
中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。
‘捌’ 数学史是讲什么的
数学发展的历史,从数的产生到现代数学。。建议读物《数学史通论》
‘玖’ 数学史是如何分期的各个时期有什么特点
数学史的分期或发展过程 数学史的分期也是讲述数学史时必然会遇到的问题,它实际上设计按怎样的线索来描述数学发展的历史。
不同的线索将给出不同的分期,通常采用的线索如: 1.按时代顺序 2.按数学对象,方法等本身的质变过程 3.按数学发展的社会背景等等。由于数学的发展是一个错综复杂的只是过程与社会过程,用单一的线索贯穿难免有会有偏颇,因此一般数学通史着作往往采取以某一线索为主,同时兼顾其他因素的做法。分期问题的深入讨论属于数学史专门研究的范围,而且存在许多争议。对数学史作出如下分期: 1.数学的起源与早期发展(公元前6世纪) 2.初等数学时期(公元前6世纪——16世纪) ①古代希腊数学(公元前6世纪——6世纪) ②中世纪东方数学(3世纪——15世纪) ③欧洲文艺复兴时期(15世纪——16世纪) 3.近代数学时期(或称变量数学建立时期,17世纪——18世纪) 4.现代数学时期(1820——现在) ①现代数学酝酿时期(1820——1870) ②现代数学形成时期(1870——1940) ③现代数学繁荣时期(或称当代数学时期,1950——现在) 特别说明的是,关于现代数学的起始与划分,目前分歧较大。