⑴ 学习数学的重要意义及作用
方方面面
比如,设计产品时的各种受力分析,经济中的统计分析,这些都用到数学中的各种解题思想和分析问题的思路。小到买东西时的找零都用到了数学
⑵ 什么是数学数学在现实生活中的作用有什么
引言:说起数学这个名词,很多人都会想到数学这门学科。确实从小学到大学甚至学到更高的层次都离不开数学,那么到底什么是数学呢?数学在现实生活中究竟有哪些作用呢?
三、生活中的数学说起生活中的数学普遍一些的,就是加减乘除这些基本的计算了,因为这些数字都是跟钱有关的。但是实际上数学中最广泛的应用还是在各种学科的基础理论支撑,比如说财经中就需要运用到数学来进行计算以及报表的分析。而物理学科也是需要数学的。尤其是计算机,其实计算机的基础就是通过各种数字的排列来表达信息的。同时数学在各种机密计算以及航天事业中的作用也是不容小觑的。
⑶ 数学学科的重要性表现在哪些方面
一般认为,数学有三个显着特点,这就是抽象性,逻辑严密性,应用广泛性,数学的以上三个特点是互相联系,互相影响,密不可分的,认识数学的以上特点,并注意在中学数学教学中正确把握好数学的特点,具有重要意义。
1.抽象性
所谓抽象就是在思想中分出事物的一些属性和联系而撇开另一些属性和联系的过程。抽象有助于我们撇开各种次要的影响,抽取事物的主要的、本质的特征并在“纯粹的”形式中单独地考察它们,从而确定这些事物的发展规律,数学以高度抽象的形式出现,首先是其研究的基本对象的高度抽象性。数学抽象最早发生于一些最基本概念的形成过程中,恩格斯对此作了极其精辟地论述:“数和形的概念不是从其他任何地方,而是从现实世界中得到来的。人们用来学习计数,也就是作第一次算术运算的十个指头,可以是任何别的东西,但总不是知性的自由创造物。为了计数,不仅要有可以计数的对象,而且还要有一种在考察对象时撇开它们的数以外的其他一切特性的能力,而这种能力是长期以经验为依据的历史发展的结果。和数的概念一样,形的概念也完全是从外部世界得来的,而不是从头脑中由纯粹的思维产生出来的。必须先存在具有一定形状的物体,把这些形状加以比较,然后才能构成形的概念。纯数学是以现实世界的空间形式和数量关系,也就是说,以非常现实的材料为对象的。这种材料以极度抽象的形式出现,这只能在表面上掩盖它来源于外部世界。但是,为了对这些形式和关系能从它们的纯粹形态来加以研究,必须使它们完全脱离自己的内容,把内容作为无关紧要的东西放在一边;这样就得到没有长宽高的点,没有厚度和宽度的线,a和b与x和y,常数和变数;只是在最后才得到知性自身的自由创造物和想象物,即虚数,[1]数的概念,点、线、面等几何图形的概念属于最原始的数学概念。在原始概念的基础上又形成有理数、无理数、复数、函数、微分、积分、n维空间以至无穷维空间这样一些抽象程度更高的概念。从数学研究的问题来看,数学研究的问题的原始素材可以来自任何领域,着眼点不是素材的内容而是素材的形式,不相干的事物在最的侧面,形的侧面可以呈现类似的模式,比如代数的演算可以描述逻辑的推理以至计算机的运行;流体力学的方程也可能出现在金融领域,数学强大的生命力就在于能够把一个领域的思想经过抽象过程的提炼而转移到别的领域,纯数学的研究成果常常能在意想不到的地方开花结果。有些外国数学家由于数学研究对象的抽象性,就认为数学是不知其所云为何物,这种认识是不妥的。
数学科学的高度抽象性,决定数学教育应该把发展学生的抽象思维能力规定为其曰标。从具体事物抽象出数量关系和空间形式,把实际问题转化为数学问题的科学抽象过程中,可以培养学生的抽象能力。
在培养学生的抽象思维能力的过程中,应该注意从现实实际事物中抽象出数学概念的提炼过程的教学,又要注意不使数学概念陷入某一具体原型的探讨纠缠。例如,对于直线概念,就要从学生常见并可以理解的实际背景,如拉紧的线,笔直的树干和电线杆等事物中抽象出这个概念,说明直线概念是从许多实际原型中抽象出来的一个数学概念,但不要使这个概念的教学变成对直线的某一具体背景的探讨。光是直线的一个重要实际原型,但如果对于直线概念的教学陷入到对于光的概念的探究,就会导致对直线概念纠缠不清。光的概念涉及了大量数学和物理的问题,牵涉了近现代几何学与物理学的概念,其中包括对欧几里得几何第五公设的漫长研究历史,非欧几何的产生,以及光学,电磁学,时间,空间,从牛顿力学的绝对时空观,到爱因斯坦的狭义相对论和广义相对论,等等。试图从光的实际背景角度去讲直线的概念,陷入对于光的本质的讨论,就使直线的概念教学走入歧途。应该清楚,光不是直线唯一的实际原型,直线的实际原型是极其丰富的。
在培养中学生的抽象思维能力方面,要注意的一个问题是应根据中学生的年龄心理特点,对中学数学教学内容的抽象程度有所控制,过度抽象的内容对普通中学生来说是不适宜的(如某些近代数学的概念)。另外,对于抽象概念的学习应该以抽象概念借以建立起来的大最具体概念作为前提和基础,否则,具体知识准备不够,抽象概念就成为一个实际内容不多的空洞的事物,学生对于学习这样的抽象概念的重要性和必要性就会认识不足。
2.严密性
所谓数学的严密性,就是要求对于任何数学结论,必须严格按照正确的推理规则,根据数学中已经证明和确认的正确的结论(公理、定理、定律、法则、公式等),经过逻辑推理得到,这就要求得到的结论不能有丝毫的主观臆断性和片面性。数学的严密性与数学的抽象性有紧密的联系,正因为数学有高度的抽象性,所以它的结论是否正确,就不能像物理、化学等学科那样,对于一些结论可以用实验来加以确认,而是依靠严格的推理来证明;而且一旦由推理证明了结论,这个结论也就是正确的。
数学科学具有普遍的严格逻辑性特点,而在数学发展历史中则有许多非常典型的例子。例如,对于无限概念逐步深入的认识,毕达哥拉斯学派对于无理数的发现,牛顿、莱布尼兹的微积分及其严格化,处处连续却处处不可导的函数的构造,集合论悖论的构造,都很好地说明了数学的这种严格的风格和精神。
数学中严谨的推理使得每一个数学结论不可动摇。数学的严格性是数学作为一门科学的要求和保证,数学中的严格推理方法是广泛需要并有广泛应用的。学习数学,不仅学习数学结论,也强调让学生理解数学结论,知道数学结论是怎么证明的,学习数学科学的方法,包括其中丰富蕴涵的严格推理方法以及其他的思维方法。如果数学教学对于一些重要结论不讲证明过程,就使教学价值大为降低。学生也常常因为对于一些重要而基本的数学结论的理解产生困难而不能及时得到教师的指导解惑而对数学学习失去兴趣和信心。根据对于新高中数学课程教学的一些调查,新教材中对于某些公式的推导,某些内容的讲解方面过于简单,不能满足同学的学习要求,特别典型的立体几何中的一些关系判定定理只给出结论,不给出证明,方法上采用了实验科学验证实验结论的方法进行操作确认,就与数学科学的精神和方法不一致,老师们的意见比较多,是日前数学教学实践面临的一个问题。数学教学的一个重要目标是教学生思维的过程与方法,让学生充分认识数学结论的真理性、科学性,发展严密的逻辑思维能力。
严密性程度的教学把握当然应该贯彻因材施教的原则,根据学生和教学实际作调适,数学教材(包括在教师教学用书中)可提供严密程度不同的教学方案,备作选择和参考。例如,对于平面几何中的平行线分线段成比例定理,在实际教学中就可以根据教学实际情况采用三种不同的教学方案,第一种是初中数学教材(如人民教育中学数学室编写的《九年义务教育三年制初级中学教科书几何第二册》)普遍采用的,即从特殊的情形作说理,不加证明把结论推广到一般情形;第二种是用面积方法来得到定理的证明(如任命教育中学数学室编写的《义务教育初中数学实验课本几何第二册》的证明方法);第三种则分别就比值是有理数、无理数的不同情况来加以证明,是严密性要求较高,对学生的思维能力要求也较高的一种教学方案(如前苏联的某些初中数学教材的教学要求)。可以肯定,长期不同程度的教学要求的差异也自然导致学生数学能力的较大差异。从培养人才的角度认识,当然应该为不同的学生设计不同的教学方案,才能有利于学生得到充分的发展。
此外,数学科学中逻辑的严密性不是绝对的,在数学发展历史中严密性的程度也是逐步加强的,例如欧几里得的《几何原本》曾经被作为逻辑严密性的一个典范,但后人也发现其中存在不严格,证明过程中也常常依赖于图形的直观。在中学数学教学中培养学生逻辑思维能力的问题上,要注意严密的适度性问题,在这方面,我国中学数学教材工作者和广大教师在初等数学内容的教学处理上作了许多研究,许多处理方式反映了中学生的认识水平,具有重要价值,例如,中学代数教学中许多运算性质的教学,其逻辑严格性不可能达到作为科学意义下数学理论的严格程度,一直以来的处理方法是基本合理的。
此外,在数学教学上追求逻辑上的严密性需要有教学时间的保证,中学生学习时间有限。目前,在实施高中数学新课程以后,各地实际教学反映教学内容多而课时紧的矛盾比较突出,教学中适当地减少了一些对中学生来说比较抽象,或难度较大,或综合性较强的教学内容,使教学时间比较充裕以利于学生消化吸收知识。在目前的高中数学新课程试验中,教学内容的量怎样才比较合理,让一部分高中学生能够学得了的新增的数学选修课内容(尤其是选修系列四的部分专题)切实得到实施,以贯彻落实新高中课程的多样性和选择性,也是值得继续探讨的重要问题。
与此相关的一个问题,数学教学要处理好过程与结果的关系。学习数学基本而重要的日标是会解决各种问题,过分地强调数学教学中的逻辑与证明又会导致知识面不宽,以致对于许多影响深远、应用广泛的数学方法了解不够。这说明,数学教育一方面应该重视逻辑思维能力的培养,还应该重视科学精神的培养,数学思想方法的领会。就数学结论的严格性和严密性,严格和严密的态度是需要的,但是,在一些特定的教学阶段,只要不导致逻辑思维能力的降低,不影响学生对于结论的理解,对于某些类同的数学定理的证明应该可以省略,这应该不会影响数学能力的培养。
其他科学工作为了证明自己的论断常常求助于实验,而数学则依靠推理和计算来得到结论。计算是数学研究的一种重要途径,所以,中学数学教学必须培养学生的数量观念和运算能力。现在的计算工具更加先进,还可以借助于大型的计算系统,这使计算能力可以大大加强。新的高中数学课程增设了算法的内容,充实了概率统计、数据处理的内容,在高中技术课程中又增加了“算法与程序设计”模块,这体现了计算机和信息时代对于培养运算能力的新要求。从目前中学数学实际教学情况看,算法内容的教学由于技术条件的限制而存在落实不够的情况,应该解决教学中存在的实际困难,如算法在计算机上真正实现运算,使教学落到实处,这就涉及计算机语言的问题,但在中学数学课程中直接引入计算机程序设计语言又似乎使中学数学教学的内容过于技术化和专门化,这是值得研究的一个问题。
3.应用广泛性
在日常生活、工作和生产劳动以及科学研究中,数量关系和空间形式方面的问题是普遍存在的,数学应用具有普遍性。数学这门历史悠久的学科,在第二次世界大战以来出现了空前的繁荣。在各分支的研究取得重大突破的同时,数学各分支之间、数学与其他学科之间的新的联系不断涌现,更显着地改变了数学科学的面貌。而意义最为深远的是数学在社会生活的作用的革命性变化,尤为显着的是在技术领域,随着计算机的发展,数学渗入各行各业,并且物化到各种先进设备中。从卫星到核电站,从天气预报到家用电器,新技术的高精度、高速度、高自动、高安全、高质量、高效率等特点,无一不是通过数学模型和数学方法并借助计算机的计算控制来实现的。计算机技术在高新技术中占了很大比重,而技术说到底实际上就是数学技术,数字式电视系统,先进民航飞机的全数字化开发过程,大量的例子说明了,在世界范围数学已经显示出第一生产力的本性,她不但是支撑其他科学的“幕后英雄”,也直接活跃在技术革命第一线。数学对于当代科学也是至关重要的,各门学科越来越走向定量化,越来越需要用数学来表达其定量和定性的规律。计算机本身的产生和进步就强烈地依赖于数学科学的进展。几乎所有重要的学科,如在名称前面加上“数学”或“计算”二字,就是现有的一种国际学术杂志的名字,这表明大量的交叉领域不断涌现,各学科正在充分利用数学方法和成就来加速本学科的发展。关于数学应用的广泛性问题,哈佛大学数学物理教授阿瑟·杰佛(Arthur Jaffe)在着名的长篇论文《整理出宇宙的秩序──数学的作用》(此文是美国国家研究委员会的报告《进一步繁荣美国数学》的一个附录)中作了精辟的论述,他充分肯定了数学在现代社会中的重要作用;“过去的四分之一世纪中,数学和数理技术已经渗透到科学技术和生产中去,并成为其中不可分割的组成部分。在现今这个技术发达的社会里,扫除数学盲’的任务已经替代了昔日扫除文盲’的任务而成为当今教育的重要曰标,人们可以把数学对于我们社会的贡献比喻成空气和食物对于生命的作用。事实上,可以说,我们大家都生活在数学的时代──我们的文化已经数学化。在我们周围,神通广大的计算机最能反映出数学的存在,……,若要把数学研究对我们社会的实用价值写出来,并说明一些具体的数学思想怎样影响这一世界,那就可以写出几部书来。”他指出:“(1)高明的数学不管怎么抽象,它在白然界中最终必能得到实际的应用;(2)要准确地预测一个数学领域到底在那些地方有用场是不可能的。”[2]有许多数学家常常对自己的思想得到的应用感到意外。例如,英国数学家哈代(G H Hardy)研究数学纯粹是为了追求数学的美,而不是因为数学有什么实际用处,他曾自信地声称数论不会有什么实际用处,但四十年后质数的性质成了编制新密码的基础,抽象的数论与国家安全发生了紧密关系。“计算机科学家报告说每一点数学都以这样或那样的方式在实际应用中帮了忙,物理学家则对于数学在自然科学中异乎寻常的有效性’赞叹不已。”
其次,数学教育应该注意培养学生应用数学的意识和能力,这已经成为我国数学教育界的共识。但应该注意的另一方面,数学的应用极其广泛,在中小学有限时间内,介绍数学应用就必须把握好度。数学的应用具有极端的广泛性,任何一个数学概念、定理、公式、法则都有极广的应用。而过量和过度的数学应用问题的教学必然影响数学基础理论的教学,而削弱基础理论的学习又将导致数学应用的削弱。在中学数学教学中,重在让学生初步了解数学在某些领域中的应用,认识数学学习的价值从而重视数学学习。另外,数学的应用也不仅限于具体知识的实际应用,很重要的是一些数学观念和思想在实际工作中的运用。中小学是打基础的时候,所谓打基础主要是打数学基本知识和技能的基础,要让学生有较宽广的数学视野,不应该以在实际中是否直接有用作为标准来决定教学内容的取舍,也不应该要求学生数学学得并不多的时候就去考虑过最的应用问题。初中数学教学实践反映,一些传统的教学内容被删减对于学生数学学习产生了不良影响;高中数学新教材实验回访也反映,高中数学教科书中某些部分实际问题份量“过重”,不少实际问题的例、习题背景太复杂,教学中需花很多时间帮助学生理解实际背景,冲淡了对主要数学知识的学习。实际上,学生参加工作后面临的实际问题会有很大的差异,学生的工作生活背景差异也很大,学生对于实际背景、实际问题的兴趣会有很大的差异,另外实际问题涉及因素常常较多,对于中小学生,尤其是对于义务教育中的学生而言常常显得比较复杂。数学在某一个特殊领域的应用就必然涉及这个领域的许多专门化的知识,对于学生成为较大的困难。此外,学校教育虽然是为学生今后参加工作和生产作的准备,但也不必让学生化过多时间去思考成人阶段才会遇到的一些实际问题,有些实际问题不如留给成年人去考虑。2001年,人民教育中学数学室邀请北京大学数学科学学院田刚教授等谈数学教育的有关问题,他们在谈到对于数学科学及其教学的看法时指出:数学主要还是计算与推理,从数学中能学到的,最重要的是逻辑思维,抽象化的方法,这是一些普遍有用的东西;数学教育中逻辑思维能力的培养要加强,就应用而言,目前的信息技术中就非常需要很强的逻辑思维能力,尤其是编写程序,编程有长有短,短的出错的可能性小一些,怎样才能短一些又解决问题,不出现错误,这就需要逻辑思维;美国进行微积分的教学改革,用高级的图形计算器,能直观地看,用逼近的方法;技术能对直观地把握数学有一定的帮助,不过真正重要、有用的还是用逻辑推导公式;数学教育要教一些基本的东西。
第三方面,数学具有广泛应用,但并非所有学生都会去从事需要很深奥的数学知识的工作,单就直接应用数学的角度而言,不必每个学生都学习很高深的数学理论。普通百姓经常应用的是最基本的数学知识,学习数学很重要的目的是通过学习提高思维能力。所以,在中小学阶段,一方面数学教学要面向全体学生,使人人都有机会获得良好的数学教育,另一方面也应该根据学生的实际和他们的兴趣爱好,根据每个学生的学业、智能发展特长,让不同的学生在不同的方面得到不同的发展,当然,对于规划在科学和技术领域发展的学生必然应该打下良好的数学基础。大家注意到,大量在中学阶段打下了良好数学基础的学生,包括部分国际国内中学数学竞赛中的优胜者,却没有在后续学习阶段继续以数学作为自己的主要发展方向而选择其他的领域,而选择理工科专业的学生常常在大学阶段仍学习很多的数学科学的课程,这也说明了数学应用的广泛性和数学对于学生发展的重要价值。
⑷ 数学在生活中的作用有什么作用
数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
数学是逻辑性很强的学科,学数学做数学题有助于锻炼发散思维 和锻炼逻辑能力
数学也能让人学会思考问题 让人变得睿智
学习数学:买菜、算账、金融、统计、建筑……各种用处不言而喻。
总之,学习帮助我们更好地生活!!!
⑸ 数学有什么好处
学习数学的意义
每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究热点,数学传统与数学史材料可以在现实的数学研究中获得发展。国内外许多着名的数学大师都具有深厚的数学史修养或者兼及数学史研究,并善于从历史素材中汲取养分,做到古为今用,推陈出新。我国着名数学家吴文俊先生早年在拓扑学研究领域取得杰出成就,七十年代开始研究中国数学史,在中国数学史研究的理论和方法方面开创了新的局面,特别是在中国传统数学机械化思想的启发下,建立了被誉为"吴方法"的关于几何定理机器证明的数学机械化方法,他的工作不愧为古为今用,振兴民族文化的典范。
科学史的现实性还表现在为我们今日的科学研究提供经验教训和历史借鉴,以使我们明确科学研究的方向以少走弯路或错路,为当今科技发展决策的制定提供依据,也是我们预见科学未来的依据。多了解一些数学史知识,也不会致使我们出现诸如解决三等分角作图、证明四色定理等荒唐事,也避免我们在费尔马大定理等问题上白废时间和精力。同时,总结我国数学发展史上的经验教训,对我国当今数学发展不无益处。
(2)数学史的文化意义
美国数学史家m.克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。许多历史学家通过数学这面镜子,了解古代其他主要文化的特征与价值取向。古希腊(公元前600年-公元前300年)数学家强调严密的推理和由此得出的结论,因此他们不关心这些成果的实用性,而是教育人们去进行抽象的推理,和激发人们对理想与美的追求。通过希腊数学史的考察,就十分容易理解,为什么古希腊具有很难为后世超越的优美文学、极端理性化的哲学,以及理想化的建筑与雕塑。而罗马数学史则告诉我们,罗马文化是外来的,罗马人缺乏独创精神而注重实用。
(3)数学史的教育意义
当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是17、18世纪的高等数学。这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。
在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。
科学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其渊源流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于各种复杂的原因,16世纪以后中国变为数学入超国,经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。
从普高教育上谈
数学史教学的教育功能
【摘要】 我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系,文化内涵和美学价值的认识.《普通高中数学课程标准(实验)》增加的数学史内容,弥补了这方面的不足.本文旨在探讨它的教育功能是如何体现的.
【关键字】 数学史 数学观 教育功能
《普通高中数学课程标准(实验)》(以下简称《标准》)新意迭出,在教学内容上的亮点之一是增加了数学史方面的内容,提供了有关的11个专题,指出要通过数学史的学习使学生"体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神."过去我们一直认为数学属于理科,学的应该是如何解题这样的方法技巧,而数学史像是文科的内容,作为课外了解的扩充知识倒是可以,成为正式的教学内容似乎没有必要.这种思想体现了我们一直以来对数学教育目的和内容的理解误区:只重视形式化的逻辑演绎能力的培养,而忽视了学习数学作为一门科学更内在的东西.下面我们就数学史教学的教育功能作一下探讨.
学习数学史可以帮助学生认识数学,形成正确的数学观
学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生"初步了解数学产生与发展的过程,体会数学对人类文明发展的作用",而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥,难学.数学的本质特征是什么 当今数学究竟发展到了哪个阶段 在科学中的地位如何 与其它学科有什么联系 这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案.
日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类"理性思维"的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学,光学,工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期.而数学历史上的三大危机分别是古希腊时期的不可公度量,17,18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然.学生可以从这种联系中发现数学追求的是清晰,准确,严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性,严谨性和广泛应用性了.
同时,介绍必要的数学史知识可以使学生在平时的学习中对所学问题的背景产生更加深入的理解,认识到数学绝不是孤立的,它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用.从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也密不可分,牛顿,笛卡儿等人既是着名的数学家也是着名的物理学家.在我们所处的新数学时期,数学(不仅仅是自然科学)逐步进入社会科学领域,发挥着意想不到的作用,可以说一切高技术的背后都有某种数学技术支持,数学技术已经成为知识经济时代的一个重要特征.这些认识对于一个学习数学十余年的高中生来说是很有必要,也是必不可少的.
二, 学习数学史有利于培养学生正确的数学思维方式
现行的数学教材一般都是经过了反复推敲的,语言十分精练简洁.为了保持了知识的系统性,把教学内容按定义,定理,证明,推论,例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少.虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质,定理,然后用来解决问题的错误观点.所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题,猜想,论证,检验,完善,一步一步成熟起来的.影响了学生正确数学思维方式的形成.
数学史的学习有利于缓解这个矛盾.通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式.这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿,莱布尼兹在古希腊的"穷竭法","求抛物线弓形面积"等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对"无穷小"的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充,完善下,经过几十年才逐步成熟起来的.
数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想,方法代表着该内容相对于以往内容的实质性进步.对这种创造过程的了解,可以使学生体会到一种活的,真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式.
三,学习数学史有利于培养学生对数学的兴趣,激发学习数学的动机
动机是激励人,推动人去行动的一种力量,从心理学的观点讲,动机可分为两个部分;人的好奇心,求知欲,兴趣,爱好构成了有利于创造的内部动机;社会责任感构成了有利于创造的外部动机.兴趣是最好的动机.在日本中学生夺取国际IEA调查总分第一名的同时,却发现日本学生不喜欢数学的比例也是第一,这说明他们的好成绩是在社会,家长,学校的压力下获得的.中国的情况如何呢 尚无全面的报道,但河南省新乡市四所中学的高中生学习数学情况的调查发现:"我不喜欢数学,但为了高考,我必须学好数学"的学生占被调查者的比例高达62.21%,而对数学"很感兴趣"的只有23.12%.可见目前中学生的学习动机不明确,对数学的兴趣也很不够,这些都极大地影响了学习数学的效果.但这并不是因为数学本身无趣,而是它被我们的教学所忽视了.在数学教育中适当结合数学史有利于培养学生对数学的兴趣,克服动机因素的消极倾向.
数学史中有很多能够培养学生学习兴趣的内容,主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒,幻方,商人过河问题等,它们有很强的可操作性,作为课堂活动或是课后研究都可以达到很好的效果.二是一些历史上的数学名题,例如七桥问题,哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣.还有一些着名数学家的生平,轶事,比如说一些年轻的数学家成材的故事,《标准》中提到的"从阿贝尔到伽罗瓦",阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁.还有法国数学家帕斯卡,16岁成为射影几何的奠基人之一,19岁发明原始计算器;德国数学家高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展,至今仍相当重要的《算术研究》;还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在的数学研究上有骄人成绩的例子,如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名.如果在教学中加入这些学生感兴趣又有知识性的内容,消除学生对数学的恐惧感,增加数学的吸引力,数学学习也许就不再是被迫无奈的了.
四,学习数学史为德育教育提供了舞台
在《标准》的要求下,德育教育已经不是像以前那样主要是政治,语文,历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从下几个方面来探讨一下.
首先,学习数学史可以对学生进行爱国主义教育.现行的中学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少, 其实中国数学有着光辉的传统,有刘徽,祖冲之,祖暅,杨辉,秦九韶,李冶,朱世杰等一批优秀的数学家,有中国剩余定理,祖暅公理,"割圆术"等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年.《标准》中"数学史选讲"专题3就是"中国古代数学瑰宝",提到《九章算术》,"孙子定理"这些有代表意义的中国古代数学成就.
然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上.从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程.《标准》中"数学史选讲"专题11—— "中国现代数学的发展"也提到要介绍"现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程".在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的"国际意识",让学生认识到爱国主义不是体现在"以己之长,说人之短"上,在科学发现上全人类应该相互学习,互相借鉴,共同提高,我们要尊重外国的数学成就,虚心的学习,"洋为中用".
其次,学习数学史可以引导学生学习数学家的优秀品质.任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点.数学家们或是坚持真理,不畏权威,或是坚持不懈,努力追求,很多人甚至付出毕生的努力.阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是"我不能留给后人一条没有证完的定理".欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表.对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执着追求的故事,对于他们正确看待学习过程中遇到的困难,树立学习数学的信心会产生重要的作用.
最后,学习数学史可以提高学生的美学修养.数学是美的,无数数学家都为这种数学的美所折服.能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美.很多着名的数学定理,原理都闪现着美学的光辉.例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用.两千多年来,它激起了无数人对数学的兴趣,意大利着名画家达芬奇,印度国王Bhaskara,美国第20任总统Carfield等都给出过它的证明.1940年,美国数学家卢米斯在所着《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力.黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与着名的斐波那契数列有着十分密切的内在联系.同时,在感叹和欣赏几何图形的对称美,尺规作图的简单美,体积三角公式的统一美,非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口.
⑹ 数学的重要性及深远意义
数学教育看起来只是一种知识教育,但本质上是一种素质教育。我们所接受的数学训练,所领会的数学思想和精神,所获得的数学教养,无时无刻不在发挥着积极的作用,成为取得成功的最重要的因素。。
本文为李大潜院士在复旦大学数学科学学院2016级新生迎新大会上的讲话。
李大潜:中国数学家,复旦大学数学系教授,中国科学院院士。对绝大多数人来说,数学是一生中学得最多的一门课程:从小学到中学,从中学到大学,包括到了研究生的学习阶段,都在学习数学。为什么要花这么多时间来学习数学?又为什么一定要努力学好数学呢?
如果认为这种学习只是为了执行学校与老师的规定,只是为了应付有关的考试并取得一个好的成绩,只是为了混得一张文凭将来找一个高收入的工作,或者只是为了或多或少掌握一些有关的数学知识,那么即使进了数学科学学院,也必然会对数学学习采取一个被动和应付的态度,学习的效果也必然会受到很大的影响。
因此,这个看来似乎很平凡的问题其实很值得大家认真地想一想。
无处不在的数学
要搞清为什么要学好数学,首先要认识数学这门学科本身的重要性。
世间的万事万物都有数与形这两个侧面,数学作为研究现实世界中的数量关系和空间形式的科学,是剔除了物质的其它具体特性,仅仅从数与形的角度来研究整个世界的。数学的作用和地位,现在看来,概括起来可以有以下几条:
1 常青的知识
作为小学、中学到大学必修的重要课程,数学是人类必不可少的知识,这一点不会有人疑问。
人类的许多发现就像过眼烟云,很多学科是从推翻前人的结论而建立新的理论的;然而,古往今来数学的发展,不是后人摧毁前人的成果,而是每一代的数学家都在原有建筑的基础上,再添加一层新的建筑。因而,数学的结论往往具有永恒的意义。
欧几里得是二千多年以前的古希腊数学家,然而,以他命名的欧几里得几何至今还在发挥着重要的作用,其中的勾股定理,不仅没有被人认为老掉了牙而不屑一顾,相反还被人称为千古第一定理,一直被高度颂扬、反复应用,就充分地说明了这一点。
勾股定理的面积证明法
2 科学的语言
伽利略曾说过:“大自然这本书是用数学语言写成的……除非你首先学懂了它的语言……否则这本书是无法读懂的。”数学这种科学的语言,是十分精确的,这是数学这门学科的特点。
同时,这种语言又是世界通用的。加减乘除,乘方开方,指数对数,微分积分,常数等等,这些数学语言和
⑺ 数学的作用是什么啊
数学一种工具,它逻辑性强,能训练人们的思维能力;它注重方式方法,能让你的思维更敏锐;再者就是能帮助你解决一些实际问题。掌握数字规律,训练逻辑思维,数学是一门基础学科,除了语言学科以外,其他学科基本上都会运用到数学。
(7)数学中哪些内容重要作用扩展阅读:
一、数学结构
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。
此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统。
把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。
代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
二、严谨性
数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思。
数学术语亦包括如同胚及可积性等专有名词,但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”.
严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”,而这情形在历史上曾出现过许多的例子。
在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理。
数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨。