A. 高等数学包括哪些内容
主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。是工科、理科、财经类研究生考试的基础科目。
指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
(1)高等数学讲什么扩展阅读
初级数学的基本内容
一、小学
整数、分数和小学的四则运算、数与代数、空间与图形、简单统计与可能性、一元一次方程,圆,正负数,立体几何初步。
二、初中
代数部分: 有理数(正数和负数及其运算),实数(根式的运算),平面直角坐标系,基本函数(一次函数,二次函数,反比例函数),简单统计,锐角三角函数,方程、(一元一次方程,二元一次方程组,一元二次方程,三元一次方程组),因式分解、整式、分式、一元一次不等式。
几何部分:全等三角形,四边形(重点是平行四边形及特殊的平行四边形),对称与旋转,相似图形(重点是相似三角形),圆的基本性质,
三、高中
集合,基本初等函数(指数函数、对数函数,幂函数,高次函数),二次函数根分布与不等式,柯西不等式,排列不等式,初等行列式,三角函数,解析几何与圆锥曲线(椭圆,抛物线,双曲线),复数,数列,高等统计与概率,排列组合,平面向量,空间向量,空间直角坐标系,导数以及相对简单的定积分。
B. 大学里面高等数学都学的什么啊
在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。
理工科的不同专业,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。
微积分的基本概念和内容包括微分学和积分学。
微分学的主要内容包括:极限理论、导数、微分等。
积分学的主要内容包括:定积分、不定积分等。
从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。
数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的收集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议。
概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。
例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。
随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题。
因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
(2)高等数学讲什么扩展阅读:
19世纪以前确立的几何、代数、分析三大数学分支中,前两个都原是初等数学的分支,其后又发展了属于高等数学的部分,而只有分析从一开始就属于高等数学。分析的基础——微积分被认为是“变量的数学”的开始,因此,研究变量是高等数学的特征之一。
原始的变量概念是物质世界变化的诸量的直接抽象,现代数学中变量的概念包含了更高层次的抽象。如数学分析中研究的限于实变量,而其他数学分支所研究的还有取复数值的复变量和向量、张量形式的。
以及各种几何量、代数量,还有取值具有偶然性的随机变量、模糊变量和变化的(概率)空间——范畴和随机过程。描述变量间依赖关系的概念由函数发展到泛函、变换以至于函子。
与初等数学一样,高等数学也研究空间形式,只不过它具有更高层次的抽象性,并反映变化的特征,或者说是在变化中研究它。例如,曲线、曲面的概念已发展成一般的流形。
按照埃尔朗根纲领,几何是关于图形在某种变换群下不变性质的理论,这也就是说,几何是将各种空间形式置于变换之下来来研究的。
无穷进入数学,这是高等数学的又一特征。现实世界的各种事物都以有限的形式出现,无穷是对他们的共同本质的一种概括。所以,无穷进入数学是数学高度理论化、抽象化的反映。数学中的无穷以潜无穷和实无穷两种形式出现。
在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。
另外一些形式上更为抽象的极限过程,在别的数学学科中也都起着基本的作用。还有许多学科的研究对象本身就是无穷多的个体,也就说是无穷集合,例如群、环、域之类及各种抽象空间。这是数学中的实无穷。能够处理这类无穷集合,是数学水平与能力提高的表现。
为了处理这类无穷集合,数学中引进了各种结构,如代数结构、序结构和拓扑结构。另外还有一种度量结构,如抽象空间中的范数、距离和测度等,它使得个体之间的关系定量化、数字化,成为数学的定性描述和定量计算两方面的桥梁。上述结构使得这些无穷集合具有丰富的内涵,能够彼此区分,并由此形成了众多的数学学科。
数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。
参考资料:
高等数学(基础学科名称)_网络
C. 高等数学主要讲什么
概括来讲,就是微积分!包括:极限、导数、微分、不定积分、定积分、多元函数、二重积分、三重积分、曲线积分、曲面积分、无穷级数、微分方程。有一大堆的定义、定理、公式。
D. 高等数学都讲什么
大学 高等数学 和中学变化很的,中学是基础,概念公式要熟悉。
高等数学 主要讲 微积分理论
这是全国 用的最广的 高等数学教材 同济大学高等数学第五版
下载地址:http://www.mydown.com/tests/267/267630.html
目录:
上册:
第一章 函数与极限
第一节 映射与函数
第二节 数列的极限
第三节 函数的极限
第四节 无穷小与无穷大
第五节 极限运算法则
第六节 极限存在准则
第七节 无穷小的比较
第八节 函数的连续性与间断点
第九节 连续函数的运算与初等函数的连续性
第十节 闭区间上连续函数的性质
第二章 函数的求导法则
第一节 函数的和.c差.c积.c商的求导法则
第二节 反函数的求导法则
第三节 高阶导数
第四节 隐函数的导数c由参数方程所确定的函数的导数相关变化率
第五节 函数的微分
第三章 微分中值定理与导数的应用
第一节 微分中值定理
第二节 洛必达法则
第三节 泰勒公式
第四节 函数的单调性与曲线的凹凸性
第五节 函数的极值与最大值最小值
第六节 函数图形的描绘
第七节 曲率
第八节 方程的近似解
第四章 不定积分
第一节 不定积分的概念与性质
第二节 换元积分法
第三节 分部积分法
第四节 有理函数的积分
第五节 积分表的使用
第五章 定积分
第一节 定积分的概念与性质
第二节 微积分基本公式
第三节 定积分的换元法和分部积分法
第四节 反常积分
第五节 反常积分的审敛法ccГ-函数
第六章 定积分的应用
第一节 定积分的元素法
第二节 定积分在几何学上的应用
第三节 定积分在物理学上的应用
第七章 空间解析几何与向量代数
第一节 向量及其线性运算
第二节 数量积cc向量积cc混合积
第三节 曲面及其方程
第四节 空间曲线及其方程
第五节 平面及其方程
第六节 空间直线及其方程
下册:
第八章 多元函数微分法及其应用
第一节 多元函数的基本概念
第二节 偏导数
第三节 全微分
第四节 多元复合函数的求导法则
第五节 隐函数的求导法则
第六节 多元微分学的几何应用
第七节 方向导数与梯度
第八节 多元函数的极值及其求法
第九节 二元函数的泰勒公式
第十节 最小二乘法
第九章 重积分
第一节 二重积分的概念与性质
第二节 二重积分的计算
第三节 三重积分
第十章 曲线积分与曲面积分
第一节 对弧长的曲线积分
第二节 对坐标的曲线积分
第三节 格林公式及其应用
第四节 对面积的曲线积分
第五节 对坐标的曲线积分
第六节 高斯公式c通量与散度
第七节 斯托克斯公式c环流量与旋度
第十一章 无穷级数
第一节 常数项级数的概念和性质
第二节 常数项级数的审敛法
第三节 幂级数
第四节 函数展开成幂级数
第五节 函数的幂级数展开式的应用
第六节 函数项级数的一致收敛性及一致收敛性的基本性质
第七节 傅里叶级数
第八节 一般周期函数的傅里叶级数
第十二章 微分方程
第一节 微分方程的基本概念
第二节 可分离变量的微分方程
第三节 齐次方程
第四节 一阶线性微分方程
第五节 全微分方程
第六节 可降阶的高阶微分方程
第七节 高阶线性微分方程
第八节 常系数齐次线性微分方程
第九节 常系数非齐次线性微分方程
第十节 欧拉方程
第十一节 微分方程的幂级数解法
第十二节 常系数线性微分方程组解法举例
如果你想深入学习 数学 高等数学 不行 需要学习数学分析。
注:楼上 的数目 下半部分 是空间解析几何 部分 不是高等数学的。
E. 大学数学主要学的是些什么内容
大学的数学学习内容属于高等数学,主要的内容有:
1、极限
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。极限是解决高等数学问题的基础。
2、微积分
微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科,在许多领域都有重要的应用。
3、空间解析几何
借助矢量的概念可使几何更便于应用到某些自然科学与技术领域中去,因此,空间解析几何介绍空间坐标系后,紧接着介绍矢量的概念及其代数运算。
历史发展
一般认为,16世纪以前发展起来的各个数学学科总的是属于初等数学的范畴,因而,17世纪以后建立的数学学科基本上都是高等数学的内容。由此可见,高等数学的范畴无法用简单的几句话或列举其所含分支学科来说明。
19世纪以前确立的几何、代数、分析三大数学分支中,前两个都原是初等数学的分支,其后又发展了属于高等数学的部分,而只有分析从一开始就属于高等数学。
分析的基础——微积分被认为是“变量的数学”的开始,因此,研究变量是高等数学的特征之一。原始的变量概念是物质世界变化的诸量的直接抽象,现代数学中变量的概念包含了更高层次的抽象。
F. 高等数学课程讲什么内容
《高等数学》是现代远程教育试点高校网络教育部分公共基础课全国统一考试科目之一,也是高等院校理工科及经济管理等学科学生必修的基础课程之一。通过本课程的学习可使学生掌握高等数学的基本概念、基本理论、基本方法和常用的运算技能,培养其运算能力、抽象概括能力、逻辑推理能力、综合分析和解决问题的能力,并为后继课程的学习和进一步获得近代科学技术知识打下基础。
G. 高等数学是什么 我怎么学
高等数学是比初等数学“高等”的数学。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为小学初中的初等数学与本科阶段的高等数学的过渡。通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科,主要内容包括:极限、微积分、空间解析几何与向量代数、级数、常微分方程。一般以微积分学和级数理论为主,其他方面的内容为辅,各种课本中略有差异。
高数学习建议
高等数学与高中数学相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是无限分割逐步逼近,极限等;从形式上讲,学习方式也很不一样,特别是一般都是大班授课,进度快,老师很难个别辅导,故对自学能力的要求很高。具体的学习方法因人而异,但有些基本的规律大家都得遵守。我具体说一下列在下面:
1。书:课本+习题集(必备),因为学好数学绝对离不开多做题(跟高中有点像,呵呵);建议习题集最好有本跟考研有关的,这样也有利于你将来可能的考研准备。
2。笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,
可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。
3。上课:建议最好预习后听听。(其实我是从来不听课的,除非习题课),听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但remember,高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。
4。学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,小弟你既要有形象的对它们的
理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。
基本网络就是上面说的笔记上的总结的知识提纲,也要重视。
基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的。
题型都明白了,比如各种极限的求法。
好了,这些都做到了,高数应该学得不会差了,至少应付考试没问题。如果你想提高些,可以做些考研的数学题,体会一下,其实也不过如此
还可以看些关于高数应用的书,其实数学本来就是从应用中来的,你会知道真的很有用(不知你学的什么专业)
最后再说说怎么提高理解能力的问题(一家之言)
1。举例具体化。如理解导数时,自己也举个例子,如f(x)=820302X2+811211(x的平方)。
2。比喻形象化。就是打比方,比如把一个二元函数的图形想成邻家女孩的头上的草帽。
3。类比初级化。比如把二元函数跟一元函数类比,泰勒公式想成二次函数,好理解。
4。多书参考法。去你们图书管借几本不是一个作者写的高数教材,虽然讲的内容都一样,但不同的作者往往对同一个问题从不同的角度表述,对你来说,从很多不同的角度、例子理解同一个问题,往往就容易多了。Just have a try!
5。不懂暂跳法。对一些定理的证明、推导过程等,如果一时不明白没关系,暂时放过,记下这个疑点待以后解决就可以了。
说了这么多也不知哪些对你有用,对了,还有要不耻上问,问同学老师都行,弄会才是目的。如有什么问题,给我留言。
另外对于你即将要学习的线性代数,则必须树立一个良好的学习态度,在这里的内容相对高数而言比较抽象,有必要多花些时间,而且在这阶段的学习里正是锻炼你的抽象思维和逻辑思维的好时机,对你以后的专业学习是大为有帮助,希望能够好好的把握。
而对于概率与统计,就更注重实际,偏于计算,对于一些数论里的知识和一些数学理论要有个很熟练的把握,而且它也是更贴近你专业的一门数学。
总之,要学好大学数学,最重要的是打好前基础。
(竭力为您解答,希望给予【好评】,非常感谢~~)
H. 高等数学都学什么
高等数学主要内容包括:极限、微积分、空间解析几何与向量代数、级数、常微分方程。
指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
(8)高等数学讲什么扩展阅读:
高等数学课程分为两个学期进行学习。它的教学内容包含了一元函数微积分、多元函数微积分、空间解析几何与向量代数初步、微分方程初步、场论初步等。
在学习这些高等数学的内容的时候,很多的同学表示犯难,的确,因为这些都是在高中课程的基础上完善的,想要更好的学好高等数学这门学科,在高中时候的积累显得特别的重要。
I. 大一高数有什么内容
大一高数所学的内容:1函数与极限,2导数与微分,3导数的应用,4不定积分,5定积分,6微分方程,7多元函数微分法,8二重积分。
大一高数学的是高数上册,每个部分都很重要,都是为了以后打基础。这几部分里最重要的是积分,大学高数的重点也是积分。几何部分在大一高数里面所占的比例不大。
(9)高等数学讲什么扩展阅读:
高等数学是大学必修课之一,分上下册,一般在大一每个学期学一册。此书为田玉芳编着(每个学校版本不一定相同),2014年出版,本书可作为高等学校理工类各专业,尤其是工科电子信息类各专业本科生的高等数学教材或教学参考书,也可供学生自学使用.。
本书是为了适应新形势下高等院校通识教育类课程改革的需要,按照高层次工科专门人才的能力与素质要求及所必须具有的微积分知识编写而成.全书以提高学生的数学素质,培养学生自我更新知识及创造性地应用数学知识解决实际问题的能力为宗旨. 本书分上下两册。