❶ 数学中cos是什么意思
cos是余弦函数的表达式。余弦函数的定义域是整个实数集,值域是[-1,1]。它是周期函数,其最小正周期为2π,在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。
在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
❷ 数学中的sin和cos是什么意思
cos是余弦值,sin是正弦值。
正弦值是在直角三角形中,对边的长比上斜边的长的值。 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。
弦值是在直角三角形中,对边的长比上斜边的长的值。 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。
sin30°=1╱2 sin45°=√2╱2 sin60°=√3╱2 sin90°=1 sin180°=0 sin0°=0 sin270°=-1
❸ cos在数学中表示什么
余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
❹ cos在数学中是什么意思
COS是余弦(一种数学符号)。
三角形中一个角的临边(相临的短的那条边)比斜边(最长的那条边)。余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
余弦定理,欧氏平面几何学基本定理。余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。
余弦定理的历史可追溯至西元三世纪前欧几里得的几何原本,在书中将三角形分为钝角和锐角来解释,这同时对应现代数学中余弦值的正负。
❺ 数学cos是什么意思
cos是余弦函数的表达式。
余弦函数的定义域是整个实数集,值域是[-1,1]。它是周期函数,其最小正周期为2π,在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。
已知三角形的三条边长,可求出三个内角;已知三角形的两边及夹角,可求出第三边;已知三角形两边及其一边对角,可求其它的角和第三条边。
解读:
在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
弦定理亦称第二余弦定理。关于三角形边角关系的重要定理之一。该定理断言:三角形任一边的平方等于其他两边平方和减去这两边与它们夹角的余弦的积的两倍。
❻ cos在数学里面是什么意思
cos是余弦,是直角三角形锐角相对边与直角相对边之商
❼ 数学中的cos是什么意思
cos:余弦,表示邻直角边和斜边的比. 三角函数的一种
❽ 数学中的cos什么意思
cos
表示余弦
你可以任意画一个直角三角形
你可以将其中的一条直角边BC设为a,另一条直角边AC为b,斜边AB为c
那么a/c就是角C的余弦
❾ 什么是cos(数学)
cos也可以是cosine的简写.
表示余弦函数
(邻边比斜边)
将一个角放入直角坐标系中
使角的始边与X轴的非负半轴重合
余弦示意图
在角的终边上找一点A(x,y)
过A做X轴的垂线
则r=(x^2+y^2)^(1/2)
cos
=x/r
❿ 数学中的Sin和Cos是什么意思
sin, cos都是三角函数,分别叫做“正弦”、“余弦”、“正切”。
在初中阶段,这三个三角函数是这样解释的:
在一个直角三角形中,设∠C=90°,∠A,B,C所对的边分别记作a,b,c,那么对于锐角∠A,它的对边a和斜边c的比值a/c叫做∠A的正弦,记作sinA;它的邻直角边b和斜边c的比值b/c叫做∠A的余弦,记作cosA;它的对边a和邻直角边b的比值a/b叫做∠A的正切,记作tanA。
在高中阶段,这三个三角函数是这样解释的:
在一个平面直角坐标系中,以原点为圆心,1为半径画一个圆,这个圆交x轴于A点。以O为旋转中心,将A点逆时针旋转一定的角度α至B点,设此时B点的坐标是(x,y),那么此时y的值就叫做α的正弦,记作sinα;此时x的值就叫做α的余弦,记作cosα;y与x的比值y/x就叫做α的正切,记作tanα。
三角函数公式
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。