A. 数学建模是什么它有什么作用
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等。
B. 数学模型的重要性
[注:一直关注数学之美系列的读者可能已经发现,我们对任何问题总是在找相应的准确的数学模型。为了说明模型的重要性,今年七月份我在 Google 中国内部讲课时用了整整一堂课来讲这个问题,下面的内容是我讲座的摘要。〕
在包括哥白尼、伽利略和牛顿在内的所有天文学家中,我最佩服的是地心说的提出者托勒密。虽然天文学起源于古埃及,并且在古巴比伦时,人们就观测到了五大行星(金、木、水、火、土)运行的轨迹,以及行星在近日点运动比远日点快。(下图是在地球上看到的金星的轨迹,看过达芬奇密码的读者知道金星大约每四年在天上画一个五角星。)
但是真正创立了天文学,并且计算出诸多天体运行轨迹的是两千年前古罗马时代的托勒密。虽然今天我们可能会嘲笑托勒密犯的简单的错误,但是真正了解托勒密贡献的人都会对他肃然起敬。托勒密发明了球坐标,定义了包括赤道和零度经线在内的经纬线,他提出了黄道,还发明了弧度制。
当然,他最大也是最有争议的发明是地心说。虽然我们知道地球是围绕太阳运动的,但是在当时,从人们的观测出发,很容易得到地球是宇宙中心的结论。从地球上看,行星的运动轨迹是不规则的,托勒密的伟大之处是用四十个小圆套大圆的方法,精确地计算出了所有行星运动的轨迹。(托勒密继承了毕达格拉斯的一些思想,他也认为圆是最完美的几何图形。)托勒密模型的精度之高,让以后所有的科学家惊叹不已。即使今天,我们在计算机的帮助下,也很难解出四十个套在一起的圆的方程。每每想到这里,我都由衷地佩服托勒密。一千五百年来,人们根据他的计算决定农时。但是,经过了一千五百年,托勒密对太阳运动的累积误差,还是差出了一星期。
地心说的示意图,我国天文学家张衡的浑天地动说其实就是地心说。
纠正地心说错误不是靠在托勒密四十个圆的模型上再多套上几个圆,而是进一步探索真理。哥白尼发现,如果以太阳为中心来描述星体的运行,只需要 8-10 个圆,就能计算出一个行星的运动轨迹,他提出了日心说。很遗憾的事,哥白尼正确的假设并没有得到比托勒密更好的结果,哥白尼的模型的误差比托勒密地要大不少。这是教会和当时人们认为哥白尼的学说是邪说的一个原因,所以日心说要想让人心服口服地接受,就得更准确地描述行星运动。
完成这一使命的是开普勒。开普勒在所有一流的天文学家中,资质较差,一生中犯了无数低级的错误。但是他有两条别人没有的东西,从他的老师第谷手中继承的大量的、在当时最精确的观测数据,以及运气。开普勒很幸运地发现了行星围绕太阳运转的轨道实际是椭圆形的,这样不需要用多个小圆套大圆,而只要用一个椭圆就能将星体运动规律描述清楚了。只是开普勒的知识和水平不足以解释为什么行星的轨道是椭圆形的。最后是伟大的科学家牛顿用万有引力解释了这个问题。
故事到这里似乎可以结束了。但是,许多年后,又有了个小的波澜。天文学家们发现,天王星的实际轨迹和用椭圆模型算出来的不太符合。当然,偷懒的办法是接着用小圆套大圆的方法修正,但是一些严肃的科学家在努力寻找真正的原因。英国的亚当斯和法国的维内尔(Verrier)独立地发现了吸引天王星偏离轨道的海王星。
讲座结束前,我和 Google 中国的工程师们一同总结了这么几个结论:
1. 一个正确的数学模型应当在形式上是简单的。(托勒密的模型显然太复杂。)
2. 一个正确的模型在它开始的时候可能还不如一个精雕细琢过的错误的模型来的准确,但是,如果我们认定大方向是对的,就应该坚持下去。(日心说开始并没有地心说准确。)
3. 大量准确的数据对研发很重要。
4. 正确的模型也可能受噪音干扰,而显得不准确;这时我们不应该用一种凑合的修正方法来弥补它,而是要找到噪音的根源,这也许能通往重大发现。
在网络搜索的研发中,我们在前面提到的单文本词频/逆文本频率指数(TF/IDF) 和网页排名(page rank)都相当于是网络搜索中的“椭圆模型”,它们都很简单易懂。
C. 数学建模的真正意义
http://www.mcm.e.cn/
这个网站叫中国大学生数学建模竞赛网,该网站内能解答你所有关于数学建模方面的疑问。
【摘要】本文重点分析了数学建模的特点,探讨了计算机应用与数学建模意识的培养之间密不可分的联系,阐述了计算机在数学建模竞赛中的作用和地位,最后介绍了笔者参加建模竞赛与学生参加竞赛的经验与感受。
【关键词】建模意识 计算机应用 数学建模竞赛 数学实验
一、引言
在利用数学方法分析和解决实际问题时,要求从实际错综复杂的关系中找出其内在的规律,然后用数学的语言--即数字、公式、图表、符号等刻画和描述出来,然后经过数学与计算机的处理--即计算、迭代等得到定量的结果,供人们进行分析、预报、决策和控制,这种把实际问题进行合理的简化假设归结为数学问题并求解的过程就是建立数学模型,简称建模。而这种成功的方法和技术反映在培养专门人才的大学教学活动中,就是数学建模教学和竞赛。数学建模简而言之就是应用数学模型来解决各种实际问题的过程,也就是通过对实际问题的抽象、简化、确定变量和参数,并应用某些规律建立变量与参数间的关系的数学问题(或称一个数学模型),再借用计算机求解该数学问题,并解释、检验、评价所得的解,从而确定能否将其用于解决实际问题的多次循环、不断深化的过程。
二、数学建模的特点
从1985年开始美国都会举办一年一度的数学建模竞赛(MathematicalContestinModeling,缩写:MCM),而我国自1992年举办首届全国大学生数学建模竞赛以来,它已经成为全国大学生科技竞赛的重要项目之一,全国大学生数学建模竞赛是面向全国大学生的群众性科技活动;竞赛要求学生(可以是任何专业)以三人为一组参加竞赛,可以自由的收集信息、调查研究,包括使用计算机和任何软件,甚至上网查询,但不得与团队以外的任何人讨论,在三天时间内,完成一篇包括模型的假设、建立、求解,计算方法的设计和用计算机对解的实现,以及结果的分析和检验,模型的改进等方面的论文。这一活动对于提高大学生素质,促进高校数学与计算机教学改革都起着积极的推动作用。
多年来,一年一度的全国大学生数学建模竞赛和国际大学生数学建模竞赛,给传统的高等数学教育改革带来了新的思路和评价标准,《数学建模》课也从仅仅为参赛队员培训,扩展为一门比较普及的选修课,同时,《数学试验》作为一门新的课程也应运而生。数学建模与数学试验教学的重点是高等与现代数学的深层应用和面向问题的设计,而不是经典理论的深入研讨和系统论证。数学建模问题绝大部分来自一些具体的科研课题或实际工程问题,而不同于普通的数学习题或竞赛题。数学建模问题的特点是:面向现实生活的应用,有相关的科研背景,综合性强,涉及面广,因素关系复杂,缺乏足够的规范性,难以套用传统成熟的解决手段,数据量庞大,可采取的算法也比较复杂,结果具有一定的弹性空间,需要一定的伴随条件,许多问题得到的只能是近似解。
另一方面,建模问题不同于理论研究,它重在对实际问题的处理,而不是深层次纯粹数学理论或者世界难题。所以,求解建模问题大都借助各种辅助工具或手段,尤其是计算机软件的应用,大大地提高了解题效率和质量。总之,《数学建模》是一门技术应用的课程,而不是基础教育课程,它强调的是如何更好更快地解决问题,如何充分利用各种科技手段作为技术支持,因而计算机的应用已经成为其不可或缺的一项基本组成。与此相关的计算机技术主要有两部分:一是如何将实际问题或模型转化或表述为可用计算机软件或编程实现的算法;二是采用哪些应用软件或编程技术可以解决这些问题。显然,后者是前者的基础,确定了工具方案,才有相应的解决方案。
由于数学建模的以上特点,决定了数学建模与计算机具有密切相关的联系,计算机在数学建模思想意识培养中发挥了重要的作用,主要是提供了有力工具和技术支持,它是更好更快进行建模的基础。计算机水平的高低可以说决定一个团队整体的建模水平。
三、数学建模与计算机的关系
计算机的产生正是数学建模的产物,20纪40年代,美国为了研究弹道导弹飞行轨迹的问题,迫切需要一种计算工具来代替人工计算,计算机在这样的背景下应运而生。计算机的产生与发展又极大地推动了数学建模活动,计算机高速的运算能力,非常适合数学建模过程中的数值计算;它的大容量贮存能力以及网络通讯功能,使得数学建模过程中资料存贮、检索变得方便有效;它的多媒体化,使得数学建模中一些问题能在计算机上进行更为逼真的模拟实验;它的智能化,能随时提醒、帮助我们进行数学模型求解。此外,如Mathlab、Maple、SAS、SPSS等一批优秀数学软件的出现更使数学建模如虎添翼。再者,数学建模与生活实际密切相关,所采集到的数据量多,而且比较复杂,比如DVD在线租赁,长江水质的评价和预测,银行贷款和分期付款等,往往计算量大,需要借助于计算机才能快捷、简便地完成。数学建模竞赛与以往所说的那种数学竞赛(纯数学竞赛)不同,它要用到计算机,甚至离不开计算机,但却又不是纯粹的计算机竞赛,它涉及到物理、化学、生物、医学、电子、农业、军事、管理等各学科、各领域,但又不受任何一个具体的学科、领域的限制。数学建模过程需要经过模型假设、模型建立、模型求解、模型分析与检验、模型应用等几个步骤,在这些步骤中都伴随着计算机的使用。例如,模型求解时,需要上机计算、编制软件、绘制图形等,数学建模竞赛中打印机随时可能使用,同时,数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展做出杰出贡献的科学家都出身于数学专业,显而易见,比赛中的一个重要环节是使用计算机来解决问题,这对使用计算机的能力的提高是很明显的。
数学建模的目的是构建数学建模意识,培养学生创造性思维能力,在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力,培养创造性思维能力,主要应培养学生灵活运用基本理论解决实际问题的能力,在数学教学中培养学生的建模意识实质上是培养、发展学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动,它既具有一定的理论性,又具有较强的实践性,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立、自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力、直觉思维、猜测、转换、构造等能力,而这些数学能力正是创造性思维所具有的最基本的特征,在培养创新思维过程中要求必须具有一定的计算机基础,只有具有一定的计算机知识才能更好的处理数据,发现事物之间的内在的联系,才能更好的进行知识的转换,才能更好的构造出最优的模型。总之,具有必备的计算机知识是培养建模意识的关键,是培养数模创新能力的前提。计算机也为数学建模竞赛活动提供了有力的工具。
四、计算机在数学建模中的运用
计算机的运用,不仅方便我们上网查找建模问题所涉及的知识,相关的文献资料,而且方便我们处理数据,进行模型求解,模型检验。
建模相关计算机软件是我们在建立模型,处理模型必需掌握的软件,他们各有自己的特点,使用他们时要注意区分他们的优缺点,选择更合适的软件来处理问题,常用软件包含一下几种类型:
1、通用数学软件。主要包括有Matlab、Mathematica、Maple和Mathcad等,在能力和用法上,都比较相近,主要用于绘制已知函数的图形和进行计算,支持完全的符号运算、精确计算和任意精度的近似计算。它们都能对数学中的微积分、解析几何、线性代数、微分方程、计算方法、概率统计等诸多领域的常见问题进行求解,但也有各自特点:例如Mathematica的符号计算能力较为强大,而Matlab在数值计算、矩阵计算和图形绘制方面更有优势,因此可以结合起来使用。
2、Lingo/Lindo 计算最优化问题的专用数学软件。Lindo用于求解线性规划和二次规划,Lingo除了具有Lindo的全部功能外,还可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解以及代数方程求根等,二者都可以求解整数规划。。
3、统计分析软件,SPSS名为社会学统计软件包,主要功能有:基本统计分析、定义表、比较平均数;一般线性模式;相关分析;回归分析、逻辑线性分析、聚类和判别分析、因子分析、非参数检验、时间序列、比例、多元反应等。SAS提供许多数据库查询统计功能,在概率和统计的经典处理计算方面提供了丰富的函数支持。是统计专业软件。
4、高级程序语言种类较多,如C、C++、C#、Basic、Delphi和Java等。
5、绘图软件。将一些图表加入附件可以为文章增色。数学软件只能绘制已知函数的图形,若是要绘制一个大致的图形,就必须使用绘图软件。可以使用几何画板、Photoshop、Flash等。因此,数学建模竞赛今后的趋势是,要求学生对各方面的知识都有所了解,对学生的计算机知识要求也更高,近年来的数学建模竞赛几乎所有的竞赛题目都涉及大量的计算或逻辑运算,因此不掌握计算机和相关数学软件的使用是难以取得好成绩的;又由于竞赛题目来自不同的领域,事先又不了解,而利用Internet可以迅速查到相关资料,这也有助于在竞赛中取得好成绩,由此可见,计算机和数学建模之间具有密不可分的联系,两者的有机结合,有效的提高了高校学生灵活运用理论知识的能力、知识的迁移能力、实际应用能力以及分析问题和解决问题。
五、结束语
笔者上大学期间参加了两次数模竞赛,近几年也参加了学院的数学建模竞赛辅导,能够深刻从中体会到其中的酸甜,也领悟到数学建模竞赛的精髓;它不仅有利于学生更好的掌握知识、运用知识,也有利于高校的科研和教学,使学生和教师能在平时的学习、工作中自动形成勤于思考的好习惯,数学建模竞赛与学生毕业以后工作时的条件非常相近,是对学生业务、能力和素质的全面培养,特别是开放性思维和创新意识,这项活动的开展有利于学生的全面素质的培养,既丰富、活跃了广大学生的课外生活,也为优秀学员脱颖而出创造了条件。不少参赛培训的同学有共同的体会,一次参赛终身受益。数学建模是通向未来的成功之路,不管名次如何,每个参赛者都是成功者。总之,利用计算机技术来开展数学建模,必将有利于数学模型的建立、求解、演算和表达,为探索者创造出理想的背景,同时也使我们的计算机用得越来越好、越来越活,数学建模中计算机的应用,使数学建模的进步如虎添翼;计算机中数学建模方法的使用,使得计算机的发展日益迅速,计算机技术与数学建模的结合,必将推动两者的快速发展。
D. 数学建模的意义在于哪里
主要为了解决一些生活中现实的问题,把一些现实的问题通过数学模型解决。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
E. 数学模型有什么用
数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其
数学工具
一般是代效方程、微分方程、
积分方程
和
差分方程
等,(2)描述客体或然现象的
随机性
模型,其
数学模型方法
是科学研究相创新的重要方法之一。在体育实践中常常提到优秀运动员的数学模型。如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。
用字母、数字和其他
数学符号
构成的等式或不等式,或用图表、图像、框图、
数理逻辑
等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。
静态和动态模型
静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用
代数方程
来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。
经典控制理论
中常用的系统的
传递函数
也是动态模型,因为它是从描述系统的微分方程变换而来的(见
拉普拉斯变换
)。
分布参数和集中参数模型
分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性
常微分方程
来描述系统的动态特性。在许多情况下,分布参数模型借助于空间
离散化
的方法,可简化为复杂程度较低的集中参数模型。
连续时间和离散
时间模型
模型中的
时间变量
是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。
随机性和确定性模型
随机性模型中变量之间关系是以统计值或
概率分布
的形式给出的,而在确定性模型中变量间的关系是确定的。
参数与非参数模型
用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。运用各种
系统辨识
的方法,可由非参数模型得到参数模型。如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型。
线性和非线性模型
线性模型中各量之间的关系是线性的,可以应用
叠加原理
,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以
线性化
为线性模型,方法是把非线性模型在工作点
邻域
内展成
泰勒级数
,保留一阶项,略去高阶项,就可得到近似的线性模型。
F. 数学建模的意义
从以下几个方面说一下:
1.数学建模提高了自己对数学的兴趣。
2.数学建模提高了自己的独立思考的能力。
3.数学建模锻炼了我们团队合作的能力。
4.数学建模使我们对论文的格式有了一个了解。
5.数学建模丰富了我们的业余生活。
6.数学建模能使我们找到志同道合的朋友。
数学建模是我们对计算机的知识也有了一定的加深。
可以从上面的几个方面总结一下参加数学建模的意义,希望能对你有所帮助。
G. 数学建模是什么,他有什么用
数学建模是数学分支,作用是根据结果去解决实际问题。
数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
应用:
自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。
经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
H. 什么是数学建模,它的意义和关键是甚么
模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物,集中反映了原型中人们需要的那一部分特征。
数学建模就是指对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。其意义在于用数学方法解决实际问题。
具体方面你最好是上mcm.e.cn去看一看,我也就是大二的时候选修过一段时间。