1. 数学初中全部重要知识点有哪些
数学初中全部重要知识点:
一、一元一次方程
1、只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3、一元一次方程解法的一般步骤:整理方程、去分母、去括号、移项、合并同类项、系数化为1。
二、解一元二次方程的步骤
1、配方法的步骤
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。
2、分解因式法的步骤
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。
3、公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。
4、韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a。
也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。
5、一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diaota”,而△=b2-4ac,这里可以分为3种情况:
(1)当△>0时,一元二次方程有2个不相等的实数根。
(2)当△=0时,一元二次方程有2个相同的实数根。
(3)当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)。
三、有理数
1、定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。
2、数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
3、相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。
4、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
5、有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
6、有理数的乘法
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积为0。例:0×1=0。
7、有理数的除法
除以一个不为0的数,等于乘这个数的倒数。
2. 初中数学内容有哪些
初中数学内容主要有《有理数》作为初中数学的第一章内容,包括有理数的加减有理数的乘除有理数的乘方,有理数的幂的运算以及有理数的混合运算。初中数学里面还学习了一元一次方程、一元一次方程组、分式方程、整式、圆、一次函数,二次函数,等等,这些内容
3. 初中数学学好要掌握哪些基础知识点
初中数学学的基本内容涉到五个学习大类。分别是“数与运算”,“方程与代数”,“图形与几何”,“函数与分析”,“数据处理与概率统计”
一、数与运算系列内容
建立从自然数、有理数到实数的数系基本结构。内容要求包括:引进无理数,形成实数概念;建立数系结构,主要是顺序结构(大小比较)和运算结构(基本运算法则、性质、顺序)。
二、方程与代数系类内容
以方程研究为中心,构建初等代数的基础。内容要求包括:代数式是根基,方程为中心,不等式讲初步;突出数学思想方法,如化归思想以及换元、消元、配方、降次等方法。
在整体安排上,一是提供如数系通性、等式性质等基本依据,如代数式及其运算等变形基础;二是系统研究基本的初等代数方程,形成关于初等代数方程的基本理论(主要指各类代数方程的基本解法以及解的存在性、个数、分布,还有方程的通解等)。
三、图形与几何系列内容
以研究图形性质为载体,形成初等几何的基础。内容要求包括:体现经验几何是起点,注重直观感知;实验几何是基础,注重合情推理如类比、归纳以及操作说理;论证几何是重点,注重演绎推理。
着重研究基本图形,如简单的直线型,圆;重视研究方法的运用,如直观经验、操作实验、演绎推理、定量分析、特殊与一般的相互转换、逆向思考等。
四、函数与分析系列内容
以形成函数概念和直观研究简单初等函数为基本任务,进行数学分析的奠基。
内容要求包括:从具体到抽象建立函数概念,利用图像直观认识函数性质,进入分析初步;在一次函数、二次函数和反比例函数等基本函数研究中,展示初等的分析方法。
五、数据处理与概率统计系列内容
以体验概率与统计的基本思想方法为重点,引进概率与统计的初步知识。内容要求包括:完善数据处理的基本方法,建立初步的概率与统计知识基础;解释和解决现实生活中一些简单的概率统计问题。
4. 初三的数学主要是学什么
初三数学要学习的内容主要包括:直角三角形的边角关系、反比例函数、二次函数、圆.知识内容看似不多,但是都是中考数学的重点和难点.首先,反比例函数与几何综合在中考选择填空题中,出现压轴题还是非常正常的;再者,对圆来讲,它是平面几何中知识最多的几何图形,
涉及的考点和题型也是最多的,在中考证明题中,难度一定不会小;最后,二次函数,在中考数学中以压轴题的形式出现,几乎可以算得上必考的压轴题了.综合上述所讲,初三的学习内容难度不小,对中考起决定性的作用.
应该怎么学
加强基础:无论学什么或者考什么,都离不开基础知识,在学习之初抓住基础,不可一味求难.
适当拓展:掌握基础为前提,进行相应的拓展.例如反比例函数与几何综合的中考题型可以尽早去接触,二次函数压轴题型也要经常去训练,这样才不至于时间太紧张而错失学习的机会.
5. 初三数学内容有哪些
初三数学学的基本内容分别是“图形与几何”,“函数与分析”,“数据处理与概率统计”。
1、图形与几何系列内容
以研究图形性质为载体,形成初等几何的基础。体现经验几何是起点,注重直观感知;实验几何是基础,注重合情推理如类比、归纳以及操作说理;论证几何是重点,注重演绎推理。
2、函数与分析系列内容
以形成函数概念和直观研究简单初等函数为基本任务,进行数学分析的奠基。在一次函数、二次函数和反比例函数等基本函数研究中,展示初等的分析方法。
3、数据处理与概率统计系列内容
以体验概率与统计的基本思想方法为重点,引进概率与统计的初步知识。完善数据处理的基本方法,建立初步的概率与统计知识基础;解释和解决现实生活中一些简单的概率统计问题。
(5)初中数学主要学什么扩展阅读:
数学概念是初中数学的基石,是数学的思维模式和方法载体。很多学生遇到的数学解题困难,追溯根源,往往发现是由于他们在某个数学概念处产生了问题,致使解题受阻。
概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识。数学概念学习方法:在学习中要了解概念的发生与形成过程中,弄清概念之间的区别与联系,在头脑中形成相关概念的网络,以达到掌握并灵活运用的程度。
学习数学新概念前,如果能让学生认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。对有些概念的教学,可以从实际出发,让孩子在操作中去发现概念的发生和发展过程
6. 初一数学学什么
初一数学主要就是学习一些比较深刻的知识,比如说数学代数几何,这些都是要学习的,数学作业就是开始学习一元两次方程和三元二次方程的代数,主要学的就是最简单的基本代数,几何主要就是学圆形三角形以及各种角度。
7. 初中数学都学哪些内容
怎样学好初中数学?需要使用什么方式哪?
数学是很多的学生都在烦恼的问题,有很多的学生存在一定的问题,这个科目的分数非常低,那么怎样学好初中数学哪?有什么方式可以改善吗?
知识点
所以想要学好数学,需要多方面的努力,这与很多的因素有关,首先可以找到属于自己的学习方式,然后了解这个科目的特点,使自己有一定的了解之后,开始进行学习,相信通过本篇文章你应该知道怎样学好初中数学了吧!
8. 初中数学内容有哪些
初中数学主要包含代数和几何两部分。
数与代数知识点主要包括有理数、实数、代数式、整式、分式、一元一次方程、二元一次方程(组)、一元二次方程、一元一次不等式(组)、一次函数、反比例函数、二次函数等。
几何部分知识点包括线段、角、相交线、平行线 、三角形 、四边形 、相似形 、圆等。
代数部分主要包含:
实数,代数式(整式,二次根式),方程(一元一次方程,二元一次方程组,一元二次方程,分式方程),不等式,函数(正比例函数,一次函数,反比例函数,二次函数)。
几何部分主要包含:
几何初步(线以角,平行线),三角形(三角形认识及性质,直角三角形,等腰三角形,全等三角形,相似三角形,锐角三角函数),四边形(平行四边形,矩形,菱形,正方形),圆,立体图形基础,图形三大变化(平移,旋转,对称)。
9. 初中数学都教些什么
初一:
数轴;正数和负数;一元一次方程和二元一次方程;多项式和单项式;有理数;对称图形;概率之类的简单问题
初二:
平方根(无理数);全等三角形;一元二次方程及其应用;一次函数(图像,解析式);相似三角形;多边形(重头是平行四边形和梯形)。进度快的还有反比例函数。
初三:
三角函数;反比例函数(怎么慢也必须得讲了);二次函数;圆
初一主要是让学生从小学过渡到初中阶段,在思维上有一个变化过程,一般会提前上一些初二的知识。
初二的知识比较多,而且讲得很快。而且会尽量多讲一些初三的东西。
初三的知识都堆到上学期讲。也挺多的。
总之初中会比小学忙很多,但很快就会习惯的~加油呢~
解释完毕~
收工~~O(∩_∩)O~
10. 初中数学都有什么内容
很多的学生到了初中之后,发现自己的分数会有一定的下降,这可能是由于上初中之后数学科目的难度加大,所以分数会有一定的降低,那么初中数学应该怎样学?应该使用什么方式哪?
知识点
当老师在讲完内容之后会讲一些课外的内容,一般是定理、概念等等,会让你对这些知识更加的了解,所以如果对这类题目有问题的同学可以多看一些课外的题目,当然想要提升分数是离不开练习题的,想要多好就需要多做一些习题,但是不可以过多,需要边做边思考才可以,这样所学的知识就会运用出来.
以上就是初中数学应该怎样学习的内容,如果在这个阶段对自己分数不满意的同学可以借鉴一下以上的内容,或许会对你有一定的帮助,将自身的分数提升.