‘壹’ 数学建模的方法有哪些
预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归);
归类判别:欧氏距离判别、fisher判别等 ;
图论:最短路径求法 ;
最优化:列方程组 用lindo 或 lingo软件解 ;
其他方法:层次分析法 马尔可夫链 主成分析法 等 。
建模常用算法,仅供参考:
蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决 问题的算法,同时间=可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 。
数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数 据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具) 。
线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多 数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用Lindo、Lingo 软件实现) 。
图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算 法,涉及到图论的问题可以用这些方法解决,需要认真准备) 。
动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算 法设计中比较常用的方法,很多场合可以用到竞赛中) 。
最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些 问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助, 但是算法的实现比较困难,需慎重使用) 。
网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很 多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 。
一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替 积分等思想是非常重要的) 。
数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分 析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编 写库函数进行调用) 。
图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问 题,通常使用Matlab 进行处理)。
‘贰’ 数学建模都有哪些方法
这些是以前在网上整理的:
要重点突破:
1 预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归);
2 归类判别:欧氏距离判别、fisher判别等 ;
3 图论:最短路径求法 ;
4 最优化:列方程组 用lindo 或 lingo软件解 ;
5 其他方法:层次分析法 马尔可夫链 主成分析法 等 ;
6 用到软件:matlab lindo (lingo) excel ;
7 比赛前写几篇数模论文。
这是每年参赛的赛提以及获奖作品的解法,你自己估量着吧……
赛题 解法
93A非线性交调的频率设计 拟合、规划
93B足球队排名 图论、层次分析、整数规划
94A逢山开路 图论、插值、动态规划
94B锁具装箱问题 图论、组合数学
95A飞行管理问题 非线性规划、线性规划
95B天车与冶炼炉的作业调度 动态规划、排队论、图论
96A最优捕鱼策略 微分方程、优化
96B节水洗衣机 非线性规划
97A零件的参数设计 非线性规划
97B截断切割的最优排列 随机模拟、图论
98A一类投资组合问题 多目标优化、非线性规划
98B灾情巡视的最佳路线 图论、组合优化
99A自动化车床管理 随机优化、计算机模拟
99B钻井布局 0-1规划、图论
00A DNA序列分类 模式识别、Fisher判别、人工神经网络
00B钢管订购和运输 组合优化、运输问题
01A血管三维重建 曲线拟合、曲面重建
01B 工交车调度问题 多目标规划
02A车灯线光源的优化 非线性规划
02B彩票问题 单目标决策
03A SARS的传播 微分方程、差分方程
03B 露天矿生产的车辆安排 整数规划、运输问题
04A奥运会临时超市网点设计 统计分析、数据处理、优化
04B电力市场的输电阻塞管理 数据拟合、优化
05A长江水质的评价和预测 预测评价、数据处理
05B DVD在线租赁 随机规划、整数规划
算法的设计的好坏将直接影响运算速度的快慢,建议多用数学软件(
Mathematice,Matlab,Maple, Mathcad,Lindo,Lingo,SAS 等),这里提供十种数学
建模常用算法,仅供参考:
1、 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决
问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必
用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数
据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多
数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通
常使用Lindo、Lingo 软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算
法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算
法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些
问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,
但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很
多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种
暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计
算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替
积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分
析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编
写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文
中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问
题,通常使用Matlab 进行处理)
‘叁’ 数学建模常用方法
模拟退火法、神经网络、遗传算法、灰色系统、模糊数学、层次分析法、图论法、回归分析法、数据拟合法、差分法、类比法、量纲分析法、变分法、数学规划、对策方法、决策方法、时间序列方法、排队方法、机理分析法
‘肆’ 数学建模中的分析方法有哪些
数学建模分析方法大体分为机理分析和测试分析两种。
机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明确的物理或现实意义。
测试分析:将研究的对象看做一个“黑箱”系统(意思是它的内部机理看不清楚),通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合最好的模型。
希望对你有帮助
‘伍’ 数学建模的基本方法
有(线性规划,整数规划,非线性规划,动态规划,图与网络,排队论,对策论,层次分析法,插值与拟合,数据统计描述和分析,方差分析,回归分析,微分方程建模,稳定状态模型,常微分方程的解法,差分方程模型,马氏链模型等等)已经发给你了
‘陆’ 数学建模有哪些常用的方法。
推荐你看 姜启源的数学建模 第三版,这本书很好,如果你能理解的话。
‘柒’ 预测(数学建模中)有哪些方法
预测的核心问题是预测的技术方法,或者说是预测的数学模型。预测的方法种类繁多,经典的有单耗法、弹性系数法、统计分析法,目前的灰色预测法、专家系统法和模糊数学法,刚刚兴起的神经网络法、优选组合法和小波分析法,不完全统计,预测方法多大200多种。
‘捌’ 求几种常用的数学建模的方法。。
1. 公式法:
等差数列求和公式:
Sn=n(a1+an)/2=na1+n(n-1)d/2
等比数列求和公式:
Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q) (q≠1)
2.错位相减法
适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式 { an }、{ bn }分别是等差数列和等比数列.
Sn=a1b1+a2b2+a3b3+...+anbn
例如: an=a1+(n-1)d bn=a1·q^(n-1) Cn=anbn Tn=a1b1+a2b2+a3b3+a4b4....+anbn
qTn= a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)
Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)
Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn) =a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q) Tn=上述式子/(1-q)
3.倒序相加法
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)
Sn =a1+ a2+ a3+...... +an Sn =an+ a(n-1)+a(n-3)...... +a1 上下相加 得到2Sn 即 Sn= (a1+an)n/2
4.分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 例如:an=2^n+n-1
5.裂项法
适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。 常用公式:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5) n·n!=(n+1)!-n!
[例] 求数列an=1/n(n+1) 的前n项和.
解:an=1/n(n+1)=1/n-1/(n+1) (裂项)
则Sn =1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)= 1-1/(n+1)= n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。 注意: 余下的项具有如下的特点 1余下的项前后的位置前后是对称的。 2余下的项前后的正负性是相反的。
6.数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
例:求证:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5 证明: 当n=1时,有: 1×2×3×4 + 2×3×4×5 = 2×3×4×5×(1/5 +1) = 2×3×4×5×6/5 假设命题在n=k时成立,于是: 1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5 则当n=k+1时有: 1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4) = 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4) = [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4) = (k+1)(k+2)(k+3)(k+4)*(k/5 +1) = [(k+1)(k+2)(k+3)(k+4)(k+5)]/5 即n=k+1时原等式仍然成立,归纳得证
7.通项化归
先将通项公式进行化简,再进行求和。 如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。
8.并项求和:
例:1-2+3-4+5-6+……+(2n-1)-2n (并项)
求出奇数项和偶数项的和,再相减。
等差数列的重要规律
1.an=m,am=n,(m不等于n),则a(m+n)=0
证明:令m>n得:
am-an=(m-n)d=n-m 即:d=-1
an=a1+(n-1)d=m 可得:a1=m+n-1
a(m+n)=a1+(m+n-1)d=0
2.Sn=m,Sm=n,(m不等于n),则Sm+n=-(m+n)
证明:令m>n得:
Sn=[a1+a1+(n-1)d]n/2=m........................1
Sm=[a1+a1+(m-1)d]m/2=n......................2
联立1、2解得:
a1=(m^2+n^2+mn-m-n)/mn
d=-2(m+n)/mn
S(m+n)=[a1+a1+(m+n-1)d](m+n)/2
=-(m+n)
设﹛an﹜是公差不为零的等差数列,
Sn是前n项的和,满足﹙a2﹚2+﹙a3﹚2=﹙a4﹚2+﹙a5﹚2 , S7=7
(1) 求数列的通项公式以及前n项和sn
(2)试求所有的正整数m,使得[am×a(m+1﹚]/a﹙m+2﹚是数列Sn中的项
‘玖’ 数学建模主要有哪些分析方法
2常用的建模方法(I)初等数学法。主要用于一些静态、线性、确定性的模型。例如,席位分配问题,学生成绩的比较,一些简单的传染病静态模型。(2)数据分析法。从大量的观测数据中,利用统计方法建立数学模型,常见的有:回归分析法,时序分析法。(3)仿真和其他方法。主要有计算机模拟(是一种统计估计方法,等效于抽样试验,可以离散系统模拟和连续系统模拟),因子试验法(主要是在系统上做局部试验,根据试验结果进行不断分析修改,求得所需模型结构),人工现实法(基于对系统的了解和所要达到的目标,人为地组成一个系统)。(4)层次分析法。主要用于有关经济计划和管理、能源决策和分配、行为科学、军事科学、军事指挥、运输、农业、教育、人才、医疗、环境等领域,以便进行决策、评价、分析、预测等。该方法关键的一步是建立层次结构模型。
‘拾’ 数学建模方法和步骤
数学建模的主要步骤:
第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建
模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以
高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应
尽量使问题线性化、均匀化。
第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间
的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老
人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱
大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工
具愈简单愈有价值。
第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,
特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计
算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作
出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差
分析,数据稳定性分析。
数学建模采用的主要方法有:
(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模
型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策
等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。
(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型
1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状
态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构
。
3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的
可能变化,人为地组成一个系统。