‘壹’ q等于什么
数学方面:在数学集合中Q表示有理数集。
物理方面:
1、焦耳:物体(质量m)经某一过程温度变化为△T,它吸收(或放出)的热量,Q=cm·△T。
2、q表示热值,公式q=Q/m(固体),q=Q/V(气体),单位:J/kg(固体),J/m^3(气体)。
3、q表示电荷 一个原电荷所带电量qe=1.60217733×10-19C。
4、Q表示电量(总电荷量)。
有理数集运算:
加法的交换律:【a+b=b+a】。
加法的结合律:【a+(b+c)=(a+b)+c】。
存在加法的单位元0,使【0+a=a+0=a】。
对任意有理数a,存在一个加法逆元,记作-a,使【a+(-a)=(-a)+a=0】。
乘法的交换律:【ab=ba】。
乘法的结合律;【a·(b·c)=(a·b)·c】。
乘法的分配律:【a(b+c)=ab+ac】。
以上内容参考:网络-有理数集
‘贰’ 数学中的Z,Q,R分别是什么…有哪些数
Z:在数学中代表的是整数集。
包括数字:
1、正整数,即大于0的整数如,1,2,3······直到n。
2、零,既不是正整数,也不是负整数,它是介于正整数和负整数的数。
3、负整数,即小于0的整数如,-1,-2,-3······直到-n。(n为正整数)
Q:在数学中代表的是有理数集。
包括数字:
1、正有理数,包括正整数和正分数,例如1,2,3······直到n,以及1/2,1/3······正分数。
2、负有理数,包括负整数和负分数,例如-1,-2,-3······直到-n,以及-1/2,-1/3······负分数。
3、零。
R:在数学中代表的是实数集。
包括数字:
1、有理数,由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比。
2、无理数,实数范围内不能表示成两个整数之比的数。常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
(2)数学中q是什么扩展阅读:
1、整数集Z的由来:
德国女数学家诺特在引入整数环概念的时候(整数集本身也是一个数环),她是德国人,德语中的整数叫做Zahlen,于是当时她将整数环记作Z,从那时候起整数集就用Z表示了。
2、有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
3、实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
4、有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
‘叁’ 数学中N,Z,Q,R各指什么数各自的解释是什么
N全体非负整数(或自然数)组成的集合;R是实数集;Z是整数集;Q是有理数集;Z*是正整数集;N*是正整数集。
集合及运算的概念:
集合:一般的,一定范围内某些确定的,不同的对象的全体构成一个集合。
子集:对于两个集合A和B,如果集合A中的任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A是集合B的子集,记作A⊆B读作A包含于B。
空集:不含任何元素的集合叫做空集。记为Φ。
集合的三要素:确定性、互异性、无序性。
集合的表示方法:列举法、描述法、视图法、区间法。
集合的分类:(按集合中元素个数多少分为:)有限集、无限集、空集。
一、集合的运算:
1、集合交换律:
A∩B=B∩A
A∪B=B∪A
2、集合结合律:
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3、集合分配律:
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
‘肆’ 数学中的Q表示什么意思
数学中的Q表示的是:有理数集,用大写黑正体符号Q代表。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
。
‘伍’ 数学中Q表示什么。
N 自然数 Q 有理数 Z. 整数 R 实数
希望对你能有所帮助。
‘陆’ 数学中的N、N+、Z、Q、R都是什么意思
N是自然数集,也叫非负整数集,例如:0、1、2、3......
N+(或N*)是正整数集,例如:1、2、3......
Z是全体整数集合,例如:-2、-1、0、1、2......
Q是有理数集,R是实数集
‘柒’ 数学里的Q代表什么数集
数学里的Q代表有理数集即全体有理数组成的集合。
集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素,数集指就是数的集合。
数学中一些常用的数集及其记法:
1、所有正整数组成的集合称为正整数集,记作N*,Z+或N+。
2、所有负整数组成的集合称为负整数集,记作Z-。
3、全体非负整数组成的集合称为非负整数集(或自然数集),记作N。
4、全体整数组成的集合称为整数集,记作Z。
5、全体实数组成的集合称为实数集,记作R。
6、全体虚数组成的集合称为虚数集,记作I。
7、全体实数和虚数组成的复数的集合称为复数集,记作C。
(7)数学中q是什么扩展阅读
集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素,数集就是数的集合。集合的范围比数集的范围大,数集只是集合中的一种而已,属于数集的一定属于集合,但属于集合的不一定是数集。
集合里的运算都是在共同的全集U下进行的,包括交集、并集、补集等,点集的元素是点(x,y),对应的全集是平面直角坐标系中所有的点的集合,数集的元素是数x,对应的全集是数轴上所有的点的集合。
不是同一类的元素的不同类集合不能进行交集、并集等运算,所以不能说数集和点集的交集是空集。如果改点集中的点在数集中,那么这就是二者的交集。
若两个集合A和B的交集为空,则说他们没有公共元素,写作:A∩B = ∅。例如集合 {1,2} 和 {3,4} 不相交,写作 {1,2} ∩ {3,4} = ∅。
任何集合与空集的交集都是空集,即A∩∅=∅。更一般的,交集运算可以对多个集合同时进行。例如,集合A、B、C和D的交集为A∩B∩C∩D=A∩[B∩(C ∩D)]。交集运算满足结合律,即A∩(B∩C)=(A∩B) ∩C。
‘捌’ 数学符号M,Z,Q,R指的都是什么数
数学符号中没有M,有N,N代表自然数集;Z代表整数集;Q代表有理数集;R代表实数集;C代表复数集。
非负整数集是一种特定的集合,指全体自然数的集合,常用符号N表示。非负整数包括正整数和零。非负整数集是一个可列集。
由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。
有理数集,即由所有有理数所构成的集合,用黑体字母Q表示。有理数集是实数集的子集。
实数集通俗地认为,通常包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。
集合C={a+bi | a,b∈R}中的数,即形如a+bi(a,b∈R)的数叫做复数。其中i叫做虚数单位,全体复数所成的集合C叫做复数集。
(8)数学中q是什么扩展阅读:
集合特性:
1、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
2、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次[6]。
3、无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
‘玖’ 数学中Q代表什么
Q可以代表未知数,也可以代表有理数,
Q也可以代表amount of regular repayment made per period
Q还可以成为角度如:sinQ
‘拾’ 数学中R,Z,N,Q都代表什么意思
R:实数集合(包括有理数和无理数);Z:整数集合{…,-1,0,1,…};N表示非负整数集;Q表示有理数集。
其他表示:
N:非负整数集合或自然数集合{0,1,2,3,…}
N*或N+:正整数集合{1,2,3,…}
Q+:正有理数集合
Q-:负有理数集合
R+:正实数集合
R-:负实数集合
C:复数集合
∅ :空集(不含有任何元素的集合)
(10)数学中q是什么扩展阅读:
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义。
即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体 。