Ⅰ 在数学中Q表示什么集合高一新生突然忘记了它的含义
Q表示有理数的集合。
类似的:
N表示自然数的集合,Z表示整数的集合,R表示实数的集合
Ⅱ 数学里的Q代表什么数集
数学里的Q代表有理数集即全体有理数组成的集合。
集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素,数集指就是数的集合。
数学中一些常用的数集及其记法:
1、所有正整数组成的集合称为正整数集,记作N*,Z+或N+。
2、所有负整数组成的集合称为负整数集,记作Z-。
3、全体非负整数组成的集合称为非负整数集(或自然数集),记作N。
4、全体整数组成的集合称为整数集,记作Z。
5、全体实数组成的集合称为实数集,记作R。
6、全体虚数组成的集合称为虚数集,记作I。
7、全体实数和虚数组成的复数的集合称为复数集,记作C。
(2)数学中q是什么集合扩展阅读
集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素,数集就是数的集合。集合的范围比数集的范围大,数集只是集合中的一种而已,属于数集的一定属于集合,但属于集合的不一定是数集。
集合里的运算都是在共同的全集U下进行的,包括交集、并集、补集等,点集的元素是点(x,y),对应的全集是平面直角坐标系中所有的点的集合,数集的元素是数x,对应的全集是数轴上所有的点的集合。
不是同一类的元素的不同类集合不能进行交集、并集等运算,所以不能说数集和点集的交集是空集。如果改点集中的点在数集中,那么这就是二者的交集。
若两个集合A和B的交集为空,则说他们没有公共元素,写作:A∩B = ∅。例如集合 {1,2} 和 {3,4} 不相交,写作 {1,2} ∩ {3,4} = ∅。
任何集合与空集的交集都是空集,即A∩∅=∅。更一般的,交集运算可以对多个集合同时进行。例如,集合A、B、C和D的交集为A∩B∩C∩D=A∩[B∩(C ∩D)]。交集运算满足结合律,即A∩(B∩C)=(A∩B) ∩C。
Ⅲ 数学中的Q表示什么意思
数学中的Q表示的是:有理数集,用大写黑正体符号Q代表。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
。
Ⅳ N、Z、Q、R个表示什么集合
N:非负整数集合或自然数集合{0,1,2,3,…}
Z:整数集合{…,-1,0,1,…}
Q:有理数集合
R:实数集合(包括有理数和无理数)
其他:
R+:正实数集合
R-:负实数集合
C:复数集合
∅ :空集(不含有任何元素的集合)
N*或N+:正整数集合{1,2,3,…}
Q+:正有理数集合
Q-:负有理数集合
(4)数学中q是什么集合扩展阅读:
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体
集合概念:
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素 。
例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S[2]。
Ⅳ q等于什么
数学方面:在数学集合中Q表示有理数集。
物理方面:
1、焦耳:物体(质量m)经某一过程温度变化为△T,它吸收(或放出)的热量,Q=cm·△T。
2、q表示热值,公式q=Q/m(固体),q=Q/V(气体),单位:J/kg(固体),J/m^3(气体)。
3、q表示电荷 一个原电荷所带电量qe=1.60217733×10-19C。
4、Q表示电量(总电荷量)。
有理数集运算:
加法的交换律:【a+b=b+a】。
加法的结合律:【a+(b+c)=(a+b)+c】。
存在加法的单位元0,使【0+a=a+0=a】。
对任意有理数a,存在一个加法逆元,记作-a,使【a+(-a)=(-a)+a=0】。
乘法的交换律:【ab=ba】。
乘法的结合律;【a·(b·c)=(a·b)·c】。
乘法的分配律:【a(b+c)=ab+ac】。
以上内容参考:网络-有理数集
Ⅵ 在集合中R、Q、Z、N、N*分别是什么意思
R实数集合。
Q有理数集合。
Z整数集合。
N自然数集合。
N*正整数集合。
实数集,包含所有有理数和无理数的集合,通常用大写字母R表示。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
有理数集,即由所有有理数所构成的集合,用黑体字母Q表示。有理数集是实数集的子集。有理数集是一个无穷集,不存在最大值或最小值。
由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。
(6)数学中q是什么集合扩展阅读:
其他:
R+:正实数集合
R-:负实数集合
C:复数集合
∅ :空集(不含有任何元素的集合)
N*或N+:正整数集合{1,2,3,…}
Q+:正有理数集合
Q-:负有理数集合
Ⅶ q在数学中代表什么集合
所有有理数的集合表示为Q,有理数的小数部分有限或为循环。无限不循环小数和开根开不尽的数叫无理数,比如π,3.141592653...等,而有理数恰恰与它相反,整数和分数统称为有理数,包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。有理数分为整数和分数,整数又分为正整数、负整数和0,分数又分为正分数、负分数,正整数和0又被称为自然数。
Ⅷ 在数学中Q表示什么集合高一新生突然忘记
有理数集
由于两个数相比的结果(商)叫做有理数,商英文是quotient,所以就用Q了
Ⅸ 数学中的N、N+、Z、Q、R都是什么意思
N是自然数集,也叫非负整数集,例如:0、1、2、3......
N+(或N*)是正整数集,例如:1、2、3......
Z是全体整数集合,例如:-2、-1、0、1、2......
Q是有理数集,R是实数集
Ⅹ 常用数集中的N,Z,Q,R分别指什么集
所有正整数组成的集合称为正整数集,记作N*,Z+或N+;
全体非负整数组成的集合称为非负整数集(或自然数集),记作N;
全体整数组成的集合称为整数集,记作Z;
全体有理数组成的集合称为有理数集,记作Q;
全体实数组成的集合称为实数集,记作R;
全体虚数组成的集合称为虚数集,记作I;
全体实数和虚数组成的复数的集合称为复数集,记作C。