‘壹’ 高数里那个d到底什么意思
d是微分英文单词differential的首字母,表示微分,即变量的微小变化量。
‘贰’ 请问高等数学中“dx”和“dy”的那个“d”是什么意思
d:没有意义,可以理解为微分符号,后跟微分变量.如d(x^2)表示函数x^2的微分
dx:其一、可以理解为对于变量x的微分;其二、由于x通常作为自变量,因此也可以理解为对自变量x的微分(即对x轴的微分量)
d/dx:没有意义,可以理解为某个函数对于变量x的导数(也叫微商,即微分的商),后跟微分函数.如:(d/dx)(x^2)表示函数x^2对于变量x的导数
dy/dx:表示关于x的函数y对自变量x的导数,再不会引起混淆的前提下也可以表示为y
‘叁’ 微积分中的那个"d"是个什么意思
解答:
搞清两个概念就能理解d的含义了。
1、增量的概念:
δx
=
x2
-
x1,δy
=
y2
-
y1
这里的δ就是增量的意思,只要是后面的量减前面的量,无论正负都叫增量。
2、无限小的概念:
当一个变量x,越来越趋向于一个数值a时,这个趋向的过程无止境的进行,
x与a的差值无限趋向于0,我们就说a是x的极限。
这个差值,我们称它为“无穷小”,它是一个越来越小的过程,一个无限趋
向于0的过程,它不是一个很小的数,而是一个趋向于0的过程。
3、δ一方面表示增量的概念,如果x1与x2差距很小,这个小是有限的小。只要
写得出来,无论多少位小数点,只要你写得出,只要你的笔一停,都是有限的小。
当x1与x2的差距在无止境的减小,无止境的靠近,在靠近的过程中,x1与x2
的差距无止境的趋近于0。这时我们写成dx,也就是说,δx是有限小的量,
dx是无限小的量。
4、d的来源,本来是
difference
=
差距。当此差距无止境的趋向于0时,演变
为
differentiation,
就变成了无限小的意思,称为“微分”。
“微分”是一个过程,是无止境的“分割”,无止境的“区分”的过程。
‘肆’ 请问高等数学中dx dy的那个d是什么意思
高等数学中dx dy的那个d意思是微分。
设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不随Δx改变的常量,但A可以随x改变)。
而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。
推导:
设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。 AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。
微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。得出: 当△x→0时,△y≈dy。 导数的记号为:(dy)/(dx)=f′(X)。
‘伍’ 高数里d是什么意思
高数里d是“求导”的意思。
‘陆’ 高等数学中的dx. dy中的d什么意思啊,希望有详细解释
以一元函数y=f(x)为例,有自变量x和应变量y。
dx则表示自变量x的增量,dx=x2-x1,即自变量从x1到x2的变化量。在微积分里,dx一般为无穷小的一个增量。
dy则表示应变量y的增量,dy=f(x2)-f(x1),即自变量的增量变化导致应变量做了dy大小的一个变化。
‘柒’ 高等数学d
d是取无穷小量的意思,数学里边把它叫微分.
dy就是对y取无穷小量,dx就是对x取无穷小量.
dy/dx就是两个无穷小量的比值,也就是y关于x的变化率,也叫关于x的导函数,简称导数.
‘捌’ 高等数学中的d和d/dx有什么区别
高等数学中d是微分。
可以对任一变量微分,比如dy=y'dx,d/dx是对微分的商,可以叫对x的导数或者微商,先d才有d/dx。
一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。
微分历史:
早在希腊时期,人类已经开始讨论“无穷”、“极限”以及“无穷分割”等概念。这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论证和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步 。
例如公元前五世纪,希腊的德谟克利特(Democritus)提出原子论:他认为宇宙万物是由极细的原子构成。在中国,《庄子.天下篇》中所言的“一尺之捶,日取其半,万世不竭”,亦指零是无穷小量。这些都是最早期人类对无穷、极限等概念的原始的描述。
其他关于无穷、极限的论述,还包括芝诺(Zeno)几个着名的悖论:其中一个悖论说一个人永远都追不上一只乌龟,因为当那人追到乌龟的出发点时,乌龟已经向前爬行了一小段路,当他再追完这一小段,乌龟又已经再向前爬行了一小段路。
芝诺说这样一追一赶的永远重覆下去,任何人都总追不上一只最慢的乌龟--当然,从现代的观点看,芝诺说的实在荒谬不过;他混淆了“无限”和“无限可分”的概念。人追乌龟经过的那段路纵然无限可分,其长度却是有限的;所以人仍然可以以有限的时间,走完这一段路。
然而这些荒谬的论述,开启了人类对无穷、极限等概念的探讨,对后世发展微积分有深远的历史意味。
另外值得一提的是,希腊时代的阿基米德(Archimedes)已经懂得用无穷分割的方法正确地计算一些面积,这跟现代积分的观念已经很相似。由此可见,在历史上,积分观念的形成比微分还要早--这跟课程上往往先讨论微分再讨论积分刚刚相反。
‘玖’ 高数中“d”、“dx”分别是什么意思“dlnx”和“dx”有什么区别
d表示积分,dx表示积分变量,即x是f中要进行积分的那个变量。
dlnx和dx表示含义不同:
1、dlnx表示对lnx整体进行积分。
1、dx表示对x进行积分。
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
(9)高等数学d是什么意思扩展阅读:
如果一个函数的积分存在,并且有限,就说这个函数是可积的。一般来说,被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。如同上面介绍的,对于只有一个变量x的实值函数f,f在闭区间[a,b]上的积分记作:
与区域D对应,是相应积分域中的微分元。
‘拾’ d表示什么
两个意思:
d是《高等数学》微分中的符号,dq表示电量的极小变化量,dt表示极短的时间。dq/dt,表示极小的电量变化与所用的极短时间的比值。(相当于是电量的变化率,以前学过的加速度就是用速度的变化率表示的,即a=dV/dt,这个d不是一个量,不能约去)。
D表示十进制,H表示十六进制,B表示二进制,OQ表示八进制。
(10)高等数学d是什么意思扩展阅读:
一般来说,数源于对物体的累计与计算,一个一个的数,就产生了自然数。今天,国际上最常使用的计数方法是十进制,它已经成为人们生活不可缺少的一部分。
十进制是古印度人发明的。从公元前2500到公元前1750年的哈拉帕文化时期开始,古印度人就采用十进制计数法。他们先是发明了1—9这九个数字符号和定位计数法,后又提出了零的理论和作为演算基点的十进制。
印度人之所以按“逢十进一”的规则进行运算,大概是因为当时他们用10个手指辅助计数。有了十进制,所需要的计数的单数仅为0,1,2,3……9。中亚许多民族都逐渐采用了这个简便的计数方法。