❶ 高二下学期数学学什么内容
导数,概率,排列组合,统计。
统计里要记公式
必修5:解三角形,数列,不等式。
选修2-1:常用逻辑用语,圆锥曲线与方程,空间向量与立体几何。
选修2-2:导数及其应用,推理与证明,数系的扩充与复数的引入。
选修2-3 :计数原理,随机变量及其分布,统计案例。
(1)四川高二数学学什么扩展阅读:
随机抽样
①能从现实生活或其他学科中提出具有一定价值的统计问题。
②结合具体的实际问题情境,理解随机抽样的必要性和重要性。
③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
④能通过试验、查阅资料、设计调查问卷等方法收集数据。
❷ 四川成都理科生高二上期数学,化学要学哪几本书急求
数学:必修5,选修2-1,选修2-2。
化学:选修3物质结构与性质或者选修4化学反应原理。(建议暑假期间这两本书都要学习,因为一本书很快教完,马上就教下一本,跟不上步伐会被淘汰)
希望对你有所帮助,望采纳。
❸ 问问四川高二上学期数学学哪些内容
理科的高二上学期,需上完必修1--5 + 选修2--1
另外在高二下学期,理科要上完选修2--2.选修2--3及选修1--2
❹ 高二文科数学内容有哪些
高中数学共学习11本书,其中必修5本,选修6本。必修课本为必修1、2、3、4、5,选修课本为选修2-1,2-2,2-3,4-1(几何证明选讲),4-4(坐标系与参数方程),4-5(不等式选讲)。
就教学进度来说,各个学校可根据实际情况安排。通常先学习高考考察的主干知识,再学习零散知识,速度由慢到快,深度有难到易,难度自始至终与高考理科数学难度相当。
高二是高三的过渡期,高二文科学习成绩好的话,高三复习的压力就相对小一点。所以高二文科数学的学习十分重要。
每学期学习重点:
1、高一第一学期
刚开学不讲上述11本书的内容,而是对初、高中的知识进行衔接,继续深入探讨二次函数的性质和应用,韦达定理,二次根式,因式分解等。接着进入必修1的学习,然后是选修2-2的导数部分。本学期学习的核心是函数与导数。
2、高一第二学期
学习必修5的数列部分,必修4,核心是数列、三角与平面向量。
3、高二第一学期
先学习选修4-1,再学习必修2的立体几何部分,然后是必修2和选修2-1的解析几何部分的直线、圆和椭圆,核心是平面几何、立体几何和解析几何。
4、高二第二学期
继续必修2和选修2-1的解析几何部分的双曲线、抛物线的学习,接着是隶属与解析几何的选修4-4,再学必修5的线形规划部分,再学选修2-3的其余部分(包括排列组合与二项式定理、概率与统计)。
接着完成选修2-2的其余部分(包括定积分、数学归纳法、复数),选修2-1其余部分(包括常见逻辑用语、空间向量),必修5和选修4-5的不等式部分,必修3(算法)等零散知识的学习,结束高中理科数学课程。本学期的主干是解析几何、概率和统计、排列组合二项式定理。
5、高三全年皆是复习备考。
❺ 高二上学期数学学什么内容
高二上学期的数学学哪些内容:
理科:必修2(解析几何初步与立体几何)、选修2-1(圆锥曲线)、选修2-2(分类记数原理)、选修2-3(排列组合)。
文科:必修2(解析几何初步与立体几何)、选修1-1(平面几何)、选修1-2(记数原理)。
可能各地区学校之间有差异,一切还以学生所在学校的教材为准,以上仅供参考!
高二数学学习要注意事项:
及时了解、掌握常用的数学思想和方法学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
❻ 现在四川高二下学期数学学什么呀,具体目录最好!求大神指点
一、直线与圆~
二、圆锥曲线方程~
1、椭圆
2、双曲线
3、抛物线
三、直线、平面、简单几何体~
1、学会三视图的分析
2、斜二测画法应注意的地方~
3、表(侧)面积与体积的公式
4、位置关系的证明
5、求角
四、导数
1、导数的意义
2、导数的几何物理意义
3、常见函数的导数公式
4、导数的四则运算法则
5、导数的应用
五、常见逻辑用语
四种命题
注意命题的否定和否命题的区别
逻辑联结词
充要条件
全称命题与特称命题
❼ 成都市高中数学必修顺序是什么样的每学期学哪几本书
你好,这个您可以去咨询一下你们的教学数学老师,以他往年的教学经验来讲,它为您提供的知识点肯定是比较全的,这边给您建议的就是去咨询一下他,希望对您有帮助,谢谢第一章
〖1.1〗集合
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法N表示自然数集,N*或N 表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.
(3)集合与元素间的关系
(4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{x|x具有的性质},其中x为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合.
(5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集.
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等
【1.1.3】集合的基本运算
(8)交集、并集、补集
【补充知识】含绝对值的不等式与一元二次不等式的解法
(1)含绝对值的不等式的解法
(2)一元二次不等式的解法
〖1.2〗函数及其表示
【1.2.1】函数的概念
(1)函数的概念函数的概念
①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A→B.
②函数的三要素:定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数.
(2)区间的概念及表示法
(3)求函数的定义域时,一般遵循以下原则:
①f(x)是整式时,定义域是全体实数.
②f(x)是分式函数时,定义域是使分母不为零的一切实数.
③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.
⑥零(负)指数幂的底数不能为零.
⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.
⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a≤g(x)≤b解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.
⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.
(4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.
④不等式法:利用基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.
⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.
⑧函数的单调性法.函数的表示法
(5)函数的表示方法
表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.
(6)映射的概念
〖1.3〗函数的基本性质
【1.3.1】单调性与最大(小)值
(1)函数的单调性
①定义及判定方法
②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.
【1.3.2】奇偶性
(4)函数的奇偶性
①定义及判定方法
②若函数f(x)为奇函数,且在x=0处有定义,则f(0)=0.
③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.
④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.
〖补充知识〗函数的图象
(1)作图
利用描点法作图:
①确定函数的定义域; ②化解函数解析式;
③讨论函数的性质(奇偶性、单调性); ④画出函数的图象.
利用基本函数图象的变换作图:
要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.
①平移变换
❽ 高二的数学要学那些内容/
高二必修学的是必修2(立体几何、解析几何——直线、圆)
选修学的是选修2-1(命题与推理、圆锥曲线——椭圆、双曲线、抛物线、平面直角坐标系)、选修2-2(导数——导函数及微积分、推理与证明)、选修2-3(排列组合、概率一类的)
❾ 高二下数学学什么内容
高二理科数学有不等式,简易逻辑,圆锥曲线,复数,二项式,排列与组合,空间向量与立体几何,变量深究等学习内容。
1、不等式
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
2、圆锥曲线
圆锥曲线包括椭圆(圆为椭圆的特例),抛物线,双曲线。
圆锥曲线(二次曲线)的(不完整)统一定义:到定点(焦点)的距离与到定直线(准线)的距离的商是常数e(离心率)的点的轨迹。当e>1时,为双曲线的一支,当e=1时,为抛物线,当0<e<1时,为椭圆,当e=0时,为一点。
3、复数
我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
4、二项式
初等代数中,二项式是只有两项的多项式,即两个单项式的和。二项式是仅次于单项式的最简单多项式。
5、空间向量
空间中具有大小和方向的量叫做空间向量。向量的大小叫做向量的长度或模(molus)。规定,长度为0的向量叫做零向量,记为0。模为1的向量称为单位向量。与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a方向相等且模相等的向量称为相等向量。
❿ 高二下学期数学学什么课本
高二下学期数学学立体几何、二项式定理、概率初步等有关内容。
具体内容包括《集合与函数》、《三角函数》、《不等式》、《数列》、《复数》、《排列组合、二项式定理》、《立体几何》、《平面解析几何》等部分。
必修课程是整个高中数学课程的基础,包括5个模块,共10学分,是所有学生都要学习的内容。
相关信息介绍:
高中数学学习是中学阶段承前启后的关键时期,不少学生升入高中后,能否适应高中数学的学习,如何才能学好高中数学,这对于高中生来说是一个急需解决的问题。
数学运算是学好数学的基本功,初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程,初中运算能力不过关,会直接影响高中数学的学习。