Ⅰ 中国传统数学的主要特征是什么从哪些成就表现出来
数学是研究客观事物的空间形式与数量关系的科学。它不受任何时间和空间的限制,强烈地显现这一本质属性。然而,在古代各个时期不同的文化传统中,数学的表现形式往往也不尽相同,各自呈现出自己的特征。比如中国古典数学在表现形式、思维模式、与社会实际的关系、研究的中心以及发展的历程等许多方面与其他文化传统,特别是古希腊数学有较大的区别。
首先是其表现形式,这里主要指数学经典的着作形式。古希腊数学常常采取抽象的公理化的形式,而中国古典数学则是以术文统率例题的形式。两种不同的形式,代表着迥然不同的两种风格。这两种形式和风格同样可以阐发数学理论的基础。有人往往忽略了这一点,把中国古代数学着作笼统地概括成应用问题集的形式。只要仔细分析、比较一下数学着作本身,就不难发现这个结论是极不正确的。比如最重要的着作《九章算术》,它的九章中,方田、粟米、少广、商功、盈不足、方程六章的全部及衰分、均输、勾股三章的部分,要么先列出一个或几个例题,然后给出十分抽象的“术”;要么先列出十分抽象的“术”,然后给出若干例题。这里的“术”都是些公式或抽象的计算程序;前者的例题只有题目及答案,后者的例题则包括题目、答案与“术”。所谓“术”就是阐述各种算法及具体应用,类似于后世的细草。《九章算术》中只有约五分之一的部分,即衰分、均输、勾股三章的约50个题目,可以说是应用问题集的形式。由此就得出《九章算术》是一部应用问题集的结论是不恰当的,正确的提法应是术文统率例题的形式。后来的《孙子算经》等的主体应该说是应用问题集的形式,但把一些预备知识放到了卷首。宋元数学高潮中的着作,贾宪《黄帝九章算经细草》的抽象性更高于《九章算术》,其它着作由于算法更为复杂,算法的抽象性有时达不到《九章》的程度,但是也作了可贵的努力,如《数书九章》的“大衍总数术”及其核心“大衍求一术”就是同余式解法的总术;“正负开方术”用抽象的文字阐述了开四次方的方法后,又声明“后篇效此”,说明也是普遍方法。朱世杰的两部着作都把大量预备知识、算法放在卷首,《四元玉鉴》的卷首还载有天元术、二元术、三元术、四元术的解法范例。《测圆海镜》更是把“圆城图式”及后面要用到的定义、命题列入卷一的“识别杂记”。因此,总的说来,算法(术)是解应用题的关键,“术”自然就成为中国古代数学的核心。中国数学着作是以算法为核心,算法统率例题的形式。中国传统文化
其次是关于数学理论的研究。古希腊数学使用演绎推理,使数学知识形成了严谨的公理化体系。许多学者夸大了中国古算与古希腊数学的差别,认为中国古代数学成就只是经验的积累,没有推理,尤其是没有演绎推理。这是对中国古代数学缺乏起码了解的肤浅之见。遗憾的是,这种肤浅之见被某些科学泰斗所赞同而颇为流行,甚至成为论述现代科学没有在中国产生的出发点。诚然,中国古代数学与哲学结合得不像古希腊那么紧密,中国古代数学大家也不像古希腊数学大师那样大多是思想界的头面人物或思想流派的首领。一般说来,中国思想家对数学的兴趣远逊于古希腊的同仁,先秦诸子中即使数学修养最高的墨家,其数学成就也难望古希腊思想家的项背。同样,中国数学家,就整体而言,对数学理论研究的关注,也远不如古希腊数学家。比如,《九章算术》和许多数学着作对数学概念没有定义,许多数学问题的表述,并不严谨。这就要求读者必须站在作者的立场上,与作者共处于一个和谐的体系中,才能理解其内容,这或多或少也阻碍了数学理论的发展。硬说中国古代与古希腊同样重视数学理论研究,固然是不妥的。反之,说中国古代数学没有理论,没有推理,也是不符史实的。《周髀算经》记载,先秦数学家陈子在教诲荣方时,指出他之所以对某些数学原理不能理解,在于他“之于数未能通类”,他认为数学的“道术”,“言约而用博”,必须做到“能类以合类”。陈子大约处于《九章算术》编纂过程的初期。实际上,《九章》的编纂正是贯穿了“通类”、“类以合类”的思想。《九章算术》的作者把能用同一种数学方法解决的问题归于一类,提出共同的、抽象的“术”,如方田术、圆田术、今有术、衰分术、返衰术、少广术、开方术、盈不足术、均输术、方程术、勾股术等等,又将这些术及例题按其性质或应用分成方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九类。刘徽进一步挖掘《九章》许多方法的内在联系,又将衰分术、均输术、方程新术等归结到今有术。刘徽正是通过“事类相推”,找出了各种方法的归宿,发现数学知识是“枝条虽分而同本干”,并“发自一端”的一株大树,形成了自己完整的数学理论体系。贾宪总结开方法,创造开方作法本源。杨辉总结出勾股生变十三名图,李冶探讨了各种容圆关系,给出600多条公式,也都是通过归纳、类比做到通类,进而“类以合类”,进行数学的理论概括。
通过“合类”,归纳出抽象的公式之后,将这些公式应用于解某些数学问题,实际上是从一般到特殊的演绎过程,这里要特别谈一下中国古代数学中有没有演绎推理的问题。大家知道,数学知识的获得,要通过类比、归纳、演绎各种推理途径,而证明一个数学命题的正确性,则必须依靠演绎推理。中国古代数学着作正是大量使用演绎推理。以中国古代最为发达的高次方程这一分支为例,刘徽、王孝通都提出了方程的推导过程,金元数学家更创造了设未知数列方程的天元术,李冶将用天元术列方程所需要的定理、公式大都在卷一的“识别杂记”中给出。刘徽、王孝通、秦九韶、李冶、朱世杰等推导高次方程的过程都是依靠演绎推理的,因而是正确的。至于刘徽用极限思想和无穷小分割对圆面积公式的证明,对锥体体积公式的证明;用出入相补原理对解勾股形诸公式的证明,对大量面积、体积公式的证明,对开方术的证明;利用齐同原理对方程术、盈不足术及许多算法的证明,都是演绎推理的典范。只要不带偏见,都会认识到刘徽在拓展数学知识时以归纳、类比为主,而在论证《九章算术》的公式、算法的正确性时,在批驳《九章算术》的某些错误时,则以演绎推理为主,从而把他自己掌握的数学知识建立在可靠的理论基础之上。
说数学研究与思想界结合得不密切,是就整体而言的,并不是说每个数学家都如此,比如刘徽就例外。他深受魏晋辩难之风的影响,他对《九章算术》“析理以辞,解体用图”,“析理”正是辩难之风的要件,刘徽析理的原则、析理的方法都是与当时辩难之风合拍的。当然,即使是刘徽对许多数学概念的探讨还没达到古希腊那么深入的地步。比如,刘徽将无穷小分割引入数学证明是前无古人的贡献,却从未考虑过潜无穷小与实无穷小的区别。不过,这未必是坏事。古希腊数学家无法圆满解决潜无限与实无限的问题,不得不把无穷小概念排除在数学研究之外,因此,他们在证明数学命题时,从未使用过极限思想和无穷小分割。刘徽则不然,他认为圆内接正多边形边数无限增多,最后必定“与圆周合体”,因此可以对与圆周合体的正多边形进行无穷小分割并求其面积之和;他认为对阳马与鳖臑组成的堑堵进行无穷分割,可以达到“微则无形”的地步;刘徽在极限思想的运用上远远超过了古希腊的同类思想,达到了文艺复兴前世界数学界的最高峰。古希腊数学家认为正方形的对角线与其边长没有公度,即与1没有公度,导致数学史上的第一次危机,使古希腊数学转向,把计算排除在数学之外,只注重空间形式的研究,因而在无理数面前束手无策。而刘徽、祖冲之等则不然,他们对“开之不尽”的“不可开”的数,敢于继续开方,“求其微数”,以十进分数无限逼近无理根的近似值。没有陷入哲学的争论,从数学计算的实际出发,使中国数学家能够绕过曾导致希腊数学改变航向或裹足不前的暗礁,在数学理论和实践上达到古希腊数学家所不曾达到的高度。
长于计算,以算法为中心,是中国古代数学的显着特点。古希腊数学只考虑数和形的性质,而不考虑具体数值。比如,他们很早就懂得,任何一个圆的周长与直径之比是个常数,但这个常数的数值,几百年无人问津,直到阿基米德才求出其值的范围。相反,中国古典数学几乎不研究离开数量关系的图形的性质,而通过切实可行的方法把实际问题化为一类数学模型,然后用一套程序化即机械化的算法求解。算经中的“术”全是计算公式与计算程序,或应用这些公式、程序的细草,所有的问题都要算出具体数值作为答案,即使几何问题,也要算出有关因素的长度、面积、体积。这就是几何方法与算法相结合,或几何问题的算法化。刘徽说:“以法相传,亦犹规矩、度量可得而共”(《九章算术注·序》),清楚地表达了中国古算形、数结合的特点。《九章算术》的开方术、方程术、盈不足术、衰分术、均输术,刘徽计算圆周率的割圆术、计算弧田面积近似值的方法,贾宪求贾宪三角各廉的增乘方法,贾宪开创而秦九韶使之完备的求高次方程正根的正负开方术,秦九韶的同余式解法,朱世杰的四元术,等等,都有相当复杂的计算程序。数学运算的程序化使复杂的计算问题易于掌握,即使不懂其数学原理,也可掌握其程序,于是产生了程序的辅助用表“立成”。上述这些程序都具有完全确定性、对一整类问题适用性及有效性等现代算法的三个特点。许多程序几乎可以一字不差地搬到现代电子计算机上实现。
先进的记数制度,强烈的位置值制是促成中国算法理论充分发展的重要因素。中国最早发明了十进位置值制记数法,这种记数法十分有利于加减乘除四则运算及分数、小数的表示。加之汉语中数字都是单音节,便于编成口诀,促成筹算乘除捷算法向口诀的转化。而筹算的使用使分离系数表示法成为顺理成章。线性方程组的分离系数表示法、开方式的记法、天元多项式、四元式的记法,实际上也是一种位置值制。未知数的幂次完全由其在表达式中的位置决定,而不必写出未知数本身,如开方式中,自上而下依次是“商”、“实”(常数项)、“方”(一次项)、“一廉”、“二廉”(二、三次项系数)……隅(最高次项系数)。天元式也是如此,只是因为运算中有正幂也有负幂,才需要在常数项旁标一“太”字,或在一次项旁标一“元”字,未知数幂次完全由与“太”或“元”的相对位置决定。这种表示法特别便于开方或加减乘除运算,尤其是用天元的幂次乘(或除),只要上下移动“太”或“元”字的位置即可。
数学理论密切联系实际,是中国古代数学的又一显着特征。不能把古算经的所有题目都看成日常生产生活的应用题,有些题目只是为了说明算法的例题,《九章算术》和《测圆海镜》中都有此类题目。但是,中国古算确实是以应用为目的的,这是与古希腊数学的显着区别之一。后者公开申明不以实际应用为目的,而是看成纯理念的精神活动,欧几里得几乎抹去了《几何原本》的实际来源的所有蛛丝马迹。而中国数学家却从不讳言研究数学的功利主义目的。自《汉书·律历志》到刘徽、秦九韶,都把数学的作用概括为“通神明”、“类万物”两个方面。这里神明的意义既可作神秘主义来理解,也可以看作说明物质世界的变化性质的范畴,或二者兼而有之。《九章算术》刘徽为其注没有任何神秘主义的成份,对通神明的作用也没作任何阐发,刘徽倒是明确指出了《九章算术》各章在实际生产生活中的应用范围:方田以御田畴界域,粟米以御交质变易,衰分以御贵贱禀税,少广以御积幂方圆,商功以御功程积实,均输以御远近劳费,盈不足以御隐杂互见,方程以御错糅正负,勾股以御高深广远,显然是“类万物”方面。秦九韶把“通神明”看作数学作用之大者,并且其理解是神秘主义与世界变化的性质二者兼而有之的,而把类万物、经世务看成数学作用之小者。尽管他表示要将数学“进之于道”,但他的数学研究实践使他感到对于大者仍“肤末于见”,而注重于小者,认识到“数术之传,以实为体”,因此“设为问答以拟于用”。他的《数书九章》除第一问外,大都是实际生活、生产及各种工程的应用题,反映南宋经济活动之翔实远胜于《九章算术》等着作对当时现实经济活动的反映。总之,中国数学密切联系实际,并在实际应用中得到发展。也许正因为有这个长处,中国数学从《九章算术》到宋元高潮,基本上坚持了唯物主义传统,未受到数字神秘主义的影响。明朝着作有一些神秘主义的东西,具有穿靴戴帽的性质,但仍不能改变以实际应用为目的这一总的特征。
统治者对数学的态度造成了中国与希腊数学不同的发展特点。古希腊统治者非常重视数学,造成希腊数学有很强的连续性、继承性。而中国古代的统治者,除个别者外,大都不重视数学。秦始皇统一中国,较为重视数学的墨家遭到镇压,汉朝以后独尊儒术,儒法合流,读经学礼,崇尚文史,成为一种社会风气。由于数学对国计民生的重大作用,统治阶级又不得不承认“算术亦六艺要事”(《颜氏家训·杂艺》),但却主张“可以兼明,不可以专业”(同上)。数学一直被视为“九九贱技”。刘徽哀叹“当今好之者寡”,(《九章算术注·序》)秦九韶说“后世学者鄙之不讲”,(《数书九章序》)李冶以大儒研究数学,自谓“其悯我者当百数,其笑我者当千数”。(《测圆海镜序》)刘徽所处之魏晋,秦、李所处之宋元,都是中国数学兴盛时期,尚且如此,何论其他!二十四史,林林总总,列入无数帝王将相,以及文学家、思想家,甚至烈女节妇,却没有为一个数学家立传,祖冲之、李冶有传,却是以文学家、名臣的身份入传的。社会的需要,以及世代数学家不计悯笑,刻苦钻研,自汉迄元,使中国数学登上了世界数坛的一个又一个高峰,然而中国数学的发展常常大起大落,艰难地前进。更使人觉得奇怪的是,高潮往往出现在战乱时期,如战国时期《九章算术》主要成就的奠基,魏晋南北朝数学理论的建立,宋辽金元筹算数学的高潮;相反,低谷往往出现在大一统的太平盛世,如唐、明两代,不仅数学建树甚少,甚至到了大数学家看不懂前代成果的可笑地步!这当然丝毫不意味着战乱、分裂比安定、统一更有利于数学的发展,而是因为战乱时期,儒家思想的统治地位往往受到冲击,社会思潮较为活跃,思想比较解放。同时由于战乱,读经入仕的道路被堵,知识分子稍稍能按自己的兴趣和社会的需求发挥自己的才智,所蕴藏的数学才能也得到较充分展示,致使处于夹缝中的数学研究状况反而比大一统的太平盛世更好一些罢了。
Ⅱ 中国古代数学特点
我国古代数学具有的特点是:实用性;算法化;模型化;数形结合、直觉把握;寓理于算.
中国数学的特点如下:
1.中国数学最基本的特点是具有鲜明的社会性。通观中国古典数学着作的内容,几乎都与当时社会生活的实际需要有着密切的联系。从《九章算术》开始,中国算学经典基本上都遵从问题集解的体例编纂而成,其内容反映了当时社会政治、经济、军事、文化等方面的某些实际需要,具有浓厚的应用数学的色彩;
2.中国数学教育与研究始终置于政府的控制之下,以适应统治阶级的需要;
3.中国数学家的数学论着深受历史上各种社会思潮、哲学流派以至宗教神学的影响,具有形形色色的社会痕迹。
4.中国数学是以几何方法和代数方法的相互渗透表现为形数结合的,是用算筹来计算的.并采用了十进位制。同时,用一整套”程序语言”来揭示计算方法,而演算程序简捷而巧妙。
5.中国数学理论表现为运算过程之中,即“寓理于算”。中国数学家善于从错综复杂的数学现象中抽象出深刻的数学概念,提炼出一般的数学原理,作为研究众多数学问题的基础。
Ⅲ 有关数学文化的题
1B 2C 3B
中国传统数学体系的特征:以___筹算___为基础,以__算术__为主,_寓理于算广泛应用
哥哥没钱,弟弟只有4.99元
Ⅳ 中国数学的历史
数学在中国历史久矣。在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;据说《易经》还包含组合数学与二进制思想。2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似。
算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算。中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的。
但是,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间。《算数书》成书于西汉初年,是传世的中国最早的数学专着,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的。《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学着作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日。”——这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”。
《九章算术》在中国古代数学发展过程中占有非常重要的地位。它经过许多人整理而成,大约成书于东汉时期。全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显着特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。
《九章算术》标志以筹算为基础的中国古代数学体系的正式形成。
中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。
赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释。在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法。用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献。三国时期魏人刘徽则注释了《九章算术》,其着作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造。其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(3.1416)”。他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础。在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”。另外,《海岛算经》也是刘徽编撰的一部数学论着。
南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学着作问世。
祖冲之、祖暅父子的工作在这一时期最具代表性。他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步。根据史料记载,其着作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图(Otto)和荷兰人安托尼兹(Anthonisz)才得出同样结果。②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同时在天文学上也有一定贡献。
隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关。在当时的算学馆《算经十书》成为专用教材对学生讲授。《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学着作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。
公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。
从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学着作。中国古代数学以宋、元数学为最高境界。在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的。
贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。
秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。
李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的着作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。
公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。
公元1303年,元代朱世杰(生卒年代不详)着《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。
14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。
明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的着作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。
由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇着作。邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的着作。
此外在数学方面鲜有较大成就取得,中国古代数学自此便衰落了。
Ⅳ 试述中国古代数学的特点
3 中国古代数学思想特点
(1). (实用性)《九章算术》收集的每个问题都是与生产实践有联系的应用题,以解决问题为目的.从《九章算术》开始,中国古典数学着作的内容,几乎都与当时社会生活的实际需要有着密切的联系.这不仅表现在中国的算学经典基本上都遵从问题集解的体例编纂而成,而且它所涉及的内容反映了当时社会政治、经济、军事、文化等方面的某些实际情况和需要,以致史学家们常常把古代数学典籍作为研究中国古代社会经济生活、典章制度(特别是度量衡制度),以及工程技术(例如土木建筑、地图测绘)等方面的珍贵史料.而明代中期以后兴起的珠算着作,所论则更是直接应用于商业等方面的计算技术.中国古代数学典籍具有浓厚的应用数学色彩,在中国古代数学发展的漫长历史中,应用始终是数学的主题,而且中国古代数学的应用领域十分广泛,着名的十大算经清楚地表明了这一点,同时也表明“实用性”又是中国古代数学合理性的衡量标准.这与古代希腊数学追求纯粹“理性”形成强烈的对照.其实,中国古代数学一开始就同天文历法结下了不解之缘.中算史上许多具有世界意义的杰出成就就是来自历法推算的.例如,举世闻名的“大衍求一术”(一次同余式组解法)产于历法上元积年的推算,由于推算日、月、五星行度的需要中算家创立了“招差术”(高次内插法);而由于调整历法数据的要求,历算家发展了分数近似法.所以,实用性是中国传统数学的特点之一.
(2).(算法程序化)中国传统数学的实用性,决定了他以解决实际问题和提高计算技术为其主要目标.不管是解决问题的方式还是具体的算法,中国数学都具有程序性的特点.中国古代的计算工具是算筹,筹算是以算筹为计算工具来记数,列式和进行各种演算的方法.有人曾经将中国传统数学与今天的计算技术对比,认为算筹相应于电子计算机可以看作“硬件”,那么中国古代的“算术”可以比做电子计算机计算的程序设计,是一种软件的思想.这种看法是很有道理的.中国的筹算不用运算符号,无须保留运算的中间过程,只要求通过筹式的逐步变换而最终获得问题的解答.因此,中国古代数学着作中的“术”,都是用一套一套的“程序语言”所描写的程序化算法.各种不同的筹法都有其基本的变换法则和固定的演算程序.中算家善于运用演算的对称性、循环性等特点,将演算程序设计得十分简捷而巧妙.如果说古希腊的数学家以发现数学的定理为目标,那么中算家则以创造精致的算法为已任.这种设计等式、算法之风气在中算史上长盛不衰,清代李锐所设计的“调日法术”和“求强弱术”等都可以说是我国古代传统的遗风. 古代数学大体可以分为两种不同的类型:一种是长于逻辑推理,一种是发展计算方法.这也大致代表了西方数学和东方数学的不同特色.虽然以算为主的某些特点也为东方的古代印度数学和中世纪的阿拉伯数学所具有,但是,中国传统数学在这方面更具有典型性.中算对于算具的依赖性和形成一整套程序化的特点尤为突出.例如,印度和阿拉伯在历史上虽然也使用过土盘等算具,但都是辅助性的,主要还是使用笔算,与中国长期使用的算筹和珠算的情形大不相同,自然也没有形成像中国这样一贯的与“硬件”相对应的整套“软件”.
(3).(模型化)“数学模型”是针对或参照某种事物系统的特征或数量关系,采用形式话数学语言,概括的近似地表达出来的一种数学结构.古代的数学模型当然没有这样严格,但如果不要求“形式化的数学语言”,对“数学结构”也作简单化的解释,则仍然可以应用这个定义.按此定义,数学模型与现实世界的事物有着不可分割的关系,与之有关的现实事物叫做现实原形,是为解释原型的问题才建立应用数学模型的.《九章算术》中大多数问题都具有一般性解法,是一类问题的模型,同类问题可以按同种方法解出.其实,以问题为中心、以算法为基础,主要依靠归纳思维建立数学模型,强调基本法则及其推广,是中国传统数学思想的精髓之一.中国传统数学的实用性,要求数学研究的结果能对各种实际问题进行分类,对每类问题给出统一的解法;以归纳为主的思维方式和以问题为中心的研究方式,倾向于建立基本问题的结构与解题模式,一般问题则被化归、分解为基本问题解决.由于中国传统数学未能建立起一套抽象的数学符号系统,对一般原理、法则的叙述一方面是借助文辞,一方面是通过具体问题的解题过程加以演示,使具体问题成为相应的数学模型.这种模型虽然和现代的数学模型有一定的区别,但二者在本质上是一样的.
(4).(寓理于算)由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次上而无理论建树.其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等.
中国古代数学的特点虽然在一定的程度上促进了其自身的发展,但正是因为这其中的某些特点,中国古代数学走向了低谷.
4 中国古代数学由兴转衰的原因分析
(1).独尊儒术,蔑视逻辑.汉武帝时,“罢黜百家,独尊儒术”使得当时注重形式逻辑的墨子思想未能得到继承和发展.儒家思想讲究简约,而忽视了逻辑思维的过程.这一点从中国古代的典籍中能找到最准确的说明.《周髀算经》中虽然给出了勾股定理,但却没给出证明.《九章算术》同样只在给出题目的同时,给出一个结果和计算的程式,对其中的逻辑思维却没有去说明.中国古代数学这种只注重计算形式(即古代数学家所谓的“术”)与过程,不注重逻辑思维的做法,在很长一段时间里禁锢了中国古代数学发展.这种情况的出现当然也有其原因,中国古代传统数学主要是在算筹的基础上发展起来的,后来发展到以算盘为工具的计算时代,但是这些工具的使用在另一方面为中国人提供了一种程式化的求解方法,从而忽视了其中的逻辑思维过程.此外,中国传统数学讲究“寓理于算”.即使高度发达的宋元数学也是如此.数学书是由一系列的数学问题组成的.你也可以称它们为“习题解集”.数学理论以‘术”的形式出现.早期的“术”只有一个过程,后人就纷纷为它们作注,而这些注释也很简约.实际上就是举例“说明”,至于说明了什么,条件变一下怎么办,就要读者自已去总结了,从来不会给你一套系统的理论.这是一种相对原始的做法.但随着数学的发展,这种做法的局限性就表现出来了,它极不利于知识的总结.如果只有很少一点数学知识,那么,问题还不严重,但随着数学知识的增长,每个知识点都用一个题目来包装,而不把它们总结出来就难以从整体上去把握这些知识.这无论对学习数学还是研究,发展数学都是不利的.
(2). 崇尚玄学,迷信数术,歪曲数学思想.魏晋时期,儒学虽然受到一定的冲击,但其统治地位并未受到动摇.老庄学说和儒家学说相反相成便形成了玄学.玄学原本探究的是有关人生的哲学,但后来与数学混在了一起.古人曾就常常以玄术来解释数学问题,使得数学概念和方法遭到歪曲.张衡是我国着名科学家.当时他虽然已经知道圆周率“周一径三”不准确,但由于他始终相信“周一径三”来源于“参天两地”的说法,一直没深入探究,因而未能将圆周率推算到更精确的地步,这不能不说是一大遗憾.当玄术和数术充塞数学时,数学已经明显存有落后的隐患.
(3). 故步自封,墨守成规,拒绝数学符号.中国古代数学是以汉语描述的,历来不重视汉字以外的数学符号,给逻辑思维带来很大的困难,使我国长期不能形成演绎推理的传统,严重影响了我国数学的发展.从明朝开始,中国就走上了闭关锁国的道路.这种行为与小农思想相适应,早在秦代就已经出现端倪,建一条长城将自己围起来,对外面的东西不闻不问.相比之下,西方在度过了中世纪的黑暗时期后,进入了文艺复兴时期.欧洲的扩张、航海技术开阔了西方人的眼界,同时也大大推动了数学的发展.在18世纪的改革和动荡中,新出现的资产阶级推翻了英、法的君主政治.封建的政治、社会和经济思想被经典的自由主义哲学所取代,这种哲学促进了19世纪的工业革命.社会生产力的提高成了西方数学发展的源源不断的动力.最终,近代的数学在西方被建立起来,而曾是数学大国之一的中国,在其中却无所作为.
(4). 此外,中国长期处于封建社会,迟迟未能进入资本主义阶段,也是导致中国古代数学发展停顿的直接原因.从整体上看,数学是与所处的社会生产力相适应的.中国社会长期处于封闭的小农经济环境,生产力低下,不仅没有工业,商业也不发达.整个社会对数学没有太高的要求, 自然研究数学的人也就少了. 恩格斯说,天文学和力学是推动数学发展的动力,而在当时的中国这种动力已趋近枯竭.
Ⅵ 数字的起源和中国数学的发展
数字的起源
早在原始人时代,人们在生产活动中注意到一只羊与许多羊,一头狼与整群狼在数量上的差异,随着时间的推移慢慢的产生了数的概念。数的概念的形成可能与火的使用一样古老,大约是在30万年以前,它对于人类文明的意义也决不亚于火的使用。
最早人们利用自己的十个指头来记数,当指头不敷应用时,人们开始采用“石头记数”“结绳记数”和“刻痕记数”。在经历了数万年的发展后,直到距今大约五千多年前,才出现了书写记数以及相应的记数系统。早期记数系统有:公元前3400年左右的古埃及象形数字;公元前2400年左右的巴比伦楔形数字;公元前1600年左右的中国甲骨文数字;公元前500年左右的希腊阿提卡数字;公元前500年左右的中国筹算数码;公元前300年左右的印度婆罗门数字以及年代不详的玛雅数字。这些记数系统采用不同的进制,其中巴比伦楔形数字采用六十进制、玛雅数字采用二十进制外,其他均采用十进制。记数系统的出现使人类文明向前迈进了一大步,随着生产力的不断发展,数字不断完善,数学就逐渐的发展起来。
中国数学发展
中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸。黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家——夏朝(前2033-前1562),共经历十三世、十六王。其后又有奴隶制国家商(前562年—1066年,共历十七世三十一王)和西周〔前1027年—前771年,共历约二百五十七年,传十一世、十二王〕。随后出现了中国历史上的第一次全国性大分裂形成的时期——春秋(前770年-前476年)战国(前403年-前221年),春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家——秦朝(前221年—前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持续发展,经历了统一强盛的西汉(公元前206年—公元8年)帝国、东汉王朝(公元25年—公元220年)、战乱频仍与分裂的三国时期(公元208年-公元280年)、西晋(公元265年—公元316年)与东晋王朝(公元317年—公元420年)、汉民族以外的少数民族统治的南朝(公元420年—公元589年)与北朝(公元386年—公元518年)。到了公元581年,由隋再次统一了全国,建立了大一统的隋朝(公元581—618年),接着经历了强大富庶文化繁荣的大唐王朝(公元618年—907年)、北方少数民族政权辽(公元916年-公元1125年)、经济和文化发达的北宋(公元960年~公元1127年)与南宋(公元1127年-公元1279年)、蒙古族建立的控制范围扩张至整个西亚地区的疆域最大的元朝(公元1271年-1368年)、元朝灭亡后,汉族人在华夏大地上重新建立起来的封建王朝——明朝(公元1368年-公元1644年),明王朝于17世纪中为少数民族女真族(满族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中国最后一个封建帝制国家。自此之后,中国脱离了帝制而转入了现代民主国家。
中国文明与古代埃及、美索不达米亚、印度文明一样,都是古老的农耕文明,但与其他文明截然不同,它其持续发展两千余年之久,在世界文明史上是绝无仅有的。这种文明十分注重社会事务的管理,强调实际与经验,关心人和自然的和谐与人伦社会的秩序,儒家思想作为调解社会矛盾、维系这一文明持续发展的重要思想基础。
一、中国数学的起源与早期发展
据《易·系辞》记载:“上古结绳而治,后世圣人易之以书契”。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。
算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。
用算筹记数,有纵、横两种方式:
表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:一纵十横,百立千僵,千、十相望,万、百相当〕,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。
筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。
在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理〔西方称勾股定理〕的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。着名的有《墨经》中关于某些几何名词的定义和命题,例如:“圆,一中同长也”、“平,同高也”等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”等。这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。
二、中国数学体系的形成与奠基
这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。
现传中国历史最早的数学专着是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年(公元前186年),所以该书的成书年代至晚是公元前186年(应该在此前)。
西汉末年〔公元前一世纪〕编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学着作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有较复杂的开方问题和分数运算等。
《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典着作,约成书于东汉初年〔公元前一世纪〕。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。
魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰着《海岛算经》,发扬了古代勾股测量术----重差术。
南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学着作。约于公元四-五世纪成书的《孙子算经》给出“物不知数”问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的“百鸡问题”引出三个未知数的不定方程组问题。
公元五世纪,祖冲之、祖暅父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。他们同时在天文学上也有突出的贡献。其着作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到3.1415926 <π< 3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值,欧洲直到十六世纪德国人鄂图(valentinus otto)和荷兰人安托尼兹(a.anthonisz)才得出同样结果;(2)祖暅在刘徽工作的基础上推导出球体体积的正确公式,并提出"幂势既同则积不容异"的体积原理,即二立体等高处截面积均相等则二体体积相等的定理。欧洲十七世纪意大利数学家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)发展了二次与三次方程的解法。
同时代的天文历学家何承天创调日法,以有理分数逼近实数,发展了古代的不定分析与数值逼近算法。
三、中国数学教育制度的建立
隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是通过土木工程中计算土方、工程的分工与验收以及仓库和地窖计算等实际问题,讨论如何以几何方式建立三次多项式方程,发展了《九章算术》中的少广、勾股章中开方理论。
隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》〔包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》〕,作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。
由于南北朝时期的一些重大天文发现在隋唐之交开始落实到历法编算中,使唐代历法中出现一些重要的数学成果。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,这在数学史上是一项杰出的创造,唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。
唐朝后期,计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。
四、中国数学发展的高峰
唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪〔宋、元两代〕,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批着名的数学家和数学着作,列举如下:贾宪的《黄帝九章算法细草》〔11世纪中叶〕,刘益的《议古根源》〔12世纪中叶〕,秦九韶的《数书九章》〔1247〕,李冶的《测圆海镜》〔1248〕和《益古演段》〔1259〕,杨辉的《详解九章算法》〔1261〕、《日用算法》〔1262〕和《杨辉算法》〔1274-1275〕,朱世杰的《算学启蒙》〔1299〕和《四元玉鉴》〔1303〕等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有:
公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚)
公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。
公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。
公元1248年,李冶(李治,公元1192一1279年)着的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的着作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。
公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。
公元1303年,元代朱世杰(生卒年代不详)着《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。
公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。
五、中国数学的衰落与日用数学的发展
这一时期指十四世纪中叶明王朝建立到明末的1582年。数学除珠算外出现全面衰弱的局面,当中涉及到中算的局限、十三世纪的考试制度中已删减数学内容、明代大兴八段考试制度等复杂的问题,不少中外数学史家仍探讨当中涉及的原因。
明代最大的成就是珠算的普及,出现了许多珠算读本,及至程大位的《直指算法统宗》〔1592〕问世,珠算理论已成系统,标志着从筹算到珠算转变的完成。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。
六、西方初等数学的传入与中西合璧
十六世纪末开始,西方传教士开始到中国活动,由于明清王朝制定天文历法的需要,传教士开始将与天文历算有关的西方初等数学知识传入中国,中国数学家在“西学中源”思想支配下,数学研究出现了一个中西融合贯通的局面。
十六世纪末,西方传教士和中国学者合译了许多西方数学专着。其中第一部且有重大影响的是意大利传教士利马窦和徐光启合译的《几何原本》前6卷〔1607〕,其严谨的逻辑体系和演译方法深受徐光启推崇。徐光启本人撰写的《测量异同》和《勾股义》便应用了《几何原本》的逻辑推理方法论证中国的勾股测望术。此外,《几何原本》课本中绝大部份的名词都是首创,且沿用至今。在输入的西方数学中仅次于几何的是三角学。在此之前,三角学只有零星的知识,而此后获得迅速发展。介绍西方三角学的着作有邓玉函编译的《大测》〔2卷,1631〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷,1631〕。在徐光启主持编译的《崇祯历书》〔137卷,1629-1633〕中,介绍了有关圆椎曲线的数学知识。
入清以后,会通中西数学的杰出代表是梅文鼎,他坚信中国传统数学“必有精理”,对古代名着做了深入的研究,同时又能正确对待西方数学,使之在中国扎根,对清代中期数学研究的高潮是有积极影响的。与他同时代的数学家还有王锡阐和年希尧等人。 清康熙帝爱好科学研究,他“御定”的《数理精蕴》〔53卷,1723〕,是一部比较全面的初等数学书,对当时的数学研究有一定影响。
七、传统数学的整理与复兴
乾嘉年间形成一个以考据学为主的干嘉学派,编成《四库全书》,其中数学着作有《算经十书》和宋元时期的着作,为保存濒于湮没的数学典籍做出重要贡献。
在研究传统数学时,许多数学家还有发明创造,例如有“谈天三友”之称的焦循、汪莱及李锐作出不少重要的工作。李善兰在《垛积比类》〔约1859〕中得到三角自乘垛求和公式,现在称之为“李善兰恒等式”。这些工作较宋元时期的数学进了一步。阮元、李锐等人编写了一部天文学家和数学家传记《畴人传》46卷〔1795-1810〕,开数学史研究之先河。
八、西方数学再次东进
1840年鸦战争后,闭关锁国政策被迫中止。同文馆内添设“算学”,上海江南制造局内添设翻译馆,由此开始第二次翻译引进的高潮。主要译者和着作有:李善兰与英国传教士伟烈亚力合译的《几何原本》后9卷〔1857〕,使中国有了完整的《几何原本》中译本;《代数学》13卷〔1859〕;《代微积拾级》18卷〔1859〕。李善兰与英国传教士艾约瑟合译《圆锥曲线说》3卷,华蘅芳与英国传教士傅兰雅合译《代数术》25卷〔1872〕,《微积溯源》8卷〔1874〕,《决疑数学》10卷〔1880〕等。在这些译着中,创造了许多数学名词和术语,至今仍在应用。 1898年建立京师大学堂,同文馆并入。1905年废除科举,建立西方式学校教育,使用的课本也与西方其它各国相仿。
九、中国现代数学的建立
这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。
中国近现代数学开始于清末民初的留学活动。较早出国学习数学的有1903年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来〔1915年转留法〕,1919年留日的苏步青等人。他们中的多数回国后成为着名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学〔今南京大学〕和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵〔1927〕、陈省身〔1934〕、华罗庚〔1936〕、许宝骙〔1936〕等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素〔1920〕,美国的伯克霍夫〔1934〕、奥斯古德〔1934〕、维纳〔1935〕,法国的阿达马〔1936〕等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年〈中国数学会学报〉和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝骙在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。
1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊〔1952年改为《数学学报》〕,1951年10月《中国数学杂志》复刊〔1953年改为《数学通报》〕。1951年8月中国数学会召开建国后第一次国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。
建国后的数学研究取得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》〔1953〕、苏步青的《射影曲线概论》〔1954〕、陈建功的《直角函数级数的和》〔1954〕和李俨的《中算史论丛》5集〔1954-1955〕等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论着达到世界先进水平,同时培养和成长起一大批优秀数学家。
60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。
1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专着的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。
十、中国数学的特点
(1)以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。
(2)具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。
(3)寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。
十一、中国数学对世界的影响
数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。
中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。
Ⅶ 中国古代是用什么计算数学和几何的
算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用
Ⅷ 中国古代的数学成就都有哪些
《九章算术》在中国古代数学发展过程中占有非常重要的地位。它经过许多人整理而成,大约成书于东汉时期。全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显着特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。
《九章算术》标志以筹算为基础的中国古代数学体系的正式形成。
中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。
赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释。在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法。用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献。三国时期魏人刘徽则注释了《九章算术》,其着作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造。其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(3.1416)”。他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础。在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”。另外,《海岛算经》也是刘徽编撰的一部数学论着。
南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学着作问世。
祖冲之、祖暅父子的工作在这一时期最具代表性。他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步。根据史料记载,其着作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图(Otto)和荷兰人安托尼兹(Anthonisz)才得出同样结果。②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同时在天文学上也有一定贡献。
隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关。在当时的算学馆《算经十书》成为专用教材对学生讲授。《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学着作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。
公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。
从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学着作。中国古代数学以宋、元数学为最高境界。在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的。
贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。
秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。
李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的着作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。
公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。
公元1303年,元代朱世杰(生卒年代不详)着《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。
14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。
明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的着作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。
由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇着作。邓玉函编译的《大测》[2卷]、《割圆八线表》[6卷]和罗雅谷的《测量全义》[10卷]是介绍西方三角学的着作。
Ⅸ 中国数学史的中国数学特点
⑴以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。
⑵具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。
⑶寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。
10、中国数学对世界的影响
数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。
中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。
Ⅹ 中国古代数学形成学科出现在哪个朝代他比世界上其他国家早出现多少年
秦汉、魏晋、南北朝,共400年间的数学发展历史。而西方古希腊时期就形成了以毕达哥拉斯、欧几里得、阿基米德、阿波罗尼奥斯为主的数学几何学,所以从形成理论来说,中国要晚500年至1000年。
一、中国数学的起源与早期发展 据《易·系辞》记载:“上古结绳而治,后世圣人易之以书契”。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。
用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,万、百相当﹞,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。
在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理﹝西方称勾股定理﹞的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。着名的有《墨经》中关于某些几何名词的定义和命题,例如:“圆,一中同长也”、“平,同高也”等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”等。这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的
186年(应该在此前)。
西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学着作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有较复杂的开方问题和分数运算等。
《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典着作,约成书于东汉初年﹝公元前一世纪﹞。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。
魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰着《海岛算经》,发扬了古代勾股测量术----重差术。
南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学着作。约于公元四-五世纪成书的《孙子算经》给出“物不知数”问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的“百鸡问题”引出三个未知数的不定方程组问题。
公元五世纪,祖冲之、祖暅父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。他们同时在天文学上也有突出的贡献。其着作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到3.1415926 <π< 3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值,欧洲直到十六世纪德国人鄂图(valentinus otto)和荷兰人安托尼兹(a.anthonisz)才得出同样结果;(2)祖暅在刘徽工作的基础上推导出球体体积的正确公式,并提出"幂势既同则积不容异"的体积
原理,即二立体等高处截面积均相等则二体体积相等的定理。欧洲十七世纪意大利数学家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)发展了二次与三次方程的解法。 同时代的天文历学家何承天创调日法,以有理分数逼近实数,发展了古代的不定分析与数值逼近算法。
三、中国数学教育制度的建立
隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是通过土木工程中计算土方、工程的分工与验收以及仓库和地窖计算等实际问题,讨论如何以几何方式建立三次多项式方程,发展了《九章算术》中的少广、勾股章中开方理论。 隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》(包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》﹞,作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。
由于南北朝时期的一些重大天文发现在隋唐之交开始落实到历法编算中,使唐代历法中出现一些重要的数学成果。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,这在数学史上是一项杰出的创造,唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。
唐朝后期,计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。
四、中国数学发展的高峰
唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪﹝宋、元两代﹞,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批着名的数学家和数学着作,列举如下:贾宪的《黄帝九章算法细草》﹝11世纪中叶﹞,刘益的《议古根源》﹝12世纪中叶﹞,秦九韶的《数书九章》﹝1247﹞,李冶的《测圆海镜》﹝1248﹞和《益古演段》﹝1259﹞,杨辉的《详解九章算法》﹝1261﹞、《日用算法》﹝1262﹞和《杨辉算法》﹝1274-1275﹞,朱世杰的《算学启蒙》﹝1299﹞和《四元玉鉴》﹝1303﹞等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有: 公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。 (《黄帝九章算法细草》已佚)公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。
公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。
公元1248年,李冶(李治,公元1192一1279年)着的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的着作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。
公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。 公元1303年,元代朱世杰(生卒年代不详)着《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。 公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。
五、中国数学的衰落与日用数学的发展
这一时期指十四世纪中叶明王朝建立到明末的1582年。数学除珠算外出现全面衰弱的局面,当中涉及到中算的局限、十三世纪的考试制度中已删减数学内容、明代大兴八段考试制度等复杂的问题,不少中外数学史家仍探讨当中涉及的原因。
明代最大的成就是珠算的普及,出现了许多珠算读本,及至程大位的《直指算法统宗》﹝1592﹞问世,珠算理论已成系统,标志着从筹算到珠算转变的完成。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。 六、西方初等数学的传入与中西合璧
十六世纪末开始,西方传教士开始到中国活动,由于明清王朝制定天文历法的需要,传教士开始将与天文历算有关的西方初等数学知识传入中国,中国数学家在“西学中源”思想支配下,数学研究出现了一个中西融合贯通的局面。 十六世纪末,西方传教士和中国学者合译了许多西方数学专着。其中第一部且有重大影响的是意大利传教士利马窦和徐光启合译的《几何原本》前6卷﹝1607﹞,其严谨的逻辑体系和演译方法深受徐光启推崇。徐光启本人撰写的《测量异同》和《勾股义》便应用了《几何原本》的逻辑推理方法论证中国的勾股测望术。此外,《几何原本》课本中绝大部份的名词都是首创,且沿用至今。在输入的西方数学中仅次于几何的是三角学。在此之前,三角学只有零星的知识,而此后获得迅速发展。介绍西方三角学的着作有邓玉函编译的《大测》﹝2卷,1631﹞、《割圆八线表》﹝6卷﹞和罗雅谷的《测量全义》﹝10卷,1631﹞。在徐光启主持编译的《崇祯历书》﹝137卷,1629-1633﹞中,介绍了有关圆椎曲线的数学知识。入清以后,会通中西数学的杰出代表是梅文鼎,他坚信中国传统数学“必有精理”,对古代名着做了深入的研究,同时又能正确对待西方数学,使之在中国扎根,对清代中期数学研究的高潮是有积极影响的。与他同时代的数学家还有王锡阐和年希尧等人。 清康熙帝爱好科学研究,他“御定”的《数理精蕴》﹝53卷,1723﹞,是一部比较全面的初等数学书,对当时的数学研究有一定影响。
七、传统数学的整理与复兴
乾嘉年间形成一个以考据学为主的干嘉学派,编成《四库全书》,其中数学着作有《算经十书》和宋元时期的着作,为保存濒于湮没的数学典籍做出重要贡献。
在研究传统数学时,许多数学家还有发明创造,例如有“谈天三友”之称的焦循、汪莱及李锐作出不少重要的工作。李善兰在《垛积比类》﹝约1859﹞中得到三角自乘垛求和公式,现在称之为“李善兰恒等式”。这些工作较宋元时期的数学进了一步。阮元、李锐等人编写了一部天文学家和数学家传记《畴人传》46卷﹝1795-1810﹞,开数学史研究之先河。 八、西方数学再次东进
1840年鸦战争后,闭关锁国政策被迫中止。同文馆内添设“算学”,上海江南制造局内添设翻译馆,由此开始第二次翻译引进的高潮。
主要译者和着作有:李善兰与英国传教士伟烈亚力合译的《几何原本》后9卷﹝1857﹞,使数学的还有江泽涵﹝1927﹞、陈省身﹝1934﹞、华罗庚﹝1936﹞、许宝骙﹝1936﹞等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素﹝1920﹞,美国的伯克霍夫﹝1934﹞、奥斯古德﹝1934﹞、维纳﹝1935﹞,法国的阿达马﹝1936﹞等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年〈中国数学会学报〉和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝骙在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。
1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊﹝1952年改为《数学学报》﹞,1951年10月《中国数学杂志》复刊﹝1953年改为《数学通报》﹞。1951年8月中国数学会召开建国后第一次国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。
建国后的数学研究取得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》﹝1953﹞、苏步青的《射影曲线概论》﹝1954﹞、陈建功的《直角函数级数的和》﹝1954﹞和李俨的《中算史论丛》5集﹝1954-1955﹞等专着,到1966年,共发表各种数学论文约2万余篇。 除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论着达到世界先进水平,同时培养和成长起一大批优秀数学家。
60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。 1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。 1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专着的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。 十、中国数学的特点
(1)以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。
(2)具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。
(3)寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。 十一、中国数学对世界的影响
数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。
中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。