❶ 世界上最难的数学题是哪一道
戯滏臯 2014-10-25回答:
不知你是说给学生的习题还是给数学家的问题...
难度大致上可以用时间来看吧,下面列出了几个100年以上的重要数学问题.
猜想/定理 证明 提出 注
费马大定理 1994 - 1637 = 357 10万马克等
哥德巴赫猜想 - 1742 > 272 希尔伯特23个问题
孪生素数猜想 - 1849 > 164 希尔伯特23个问题(部分解决)
黎曼猜想 - 1859 > 155 希尔伯特23个问题,千禧年大奖难题
地图四色定理 1976 - 1852 = 124
庞加莱猜想 2006 - 1904 = 102 千禧年大奖难题
当然时间并不完全代表难度,还与数学家的投入有密切关系,而投入的多少与问题的重要性有关,问题的重要性(以及难度)可以从是否有悬赏(悬赏金额),是否广泛关注来大致认识.
考虑到近两个世纪地球人口剧增,近期提出的问题其实也应该相当有难度.
貌似一般认为黎曼猜想是现在未证明的而又最具有深远影响的定理了.
❷ 世界上最难的六年级数学题
1、甲乙两人同时从A地出发前往B地
甲每分钟走80米
乙每分钟走60米
甲到达B地休息了半小时返回A地甲离开B地15分钟后与正在走向B地的乙相遇AB两地相距多少米
2、一项工程,甲单独做要12小时完成,乙单独做要18小时完成,若甲先做1小时,乙接替甲做1小时,再由甲接替乙做1小时,……
两人如此接替工作,问完成任务时,共用了多少小时?
3、“长江”号轮船第一次顺流航行12公里又逆流航行4公里,第二次在同一河流中顺流航行12公里,逆流航行7公里,结果两次所用的时间相等,求顺水船速与逆水船速的比。
4、一只猴子偷吃桃树上的桃子,第一天偷吃了
,以后的28天,分别偷吃了当天现有的桃子的
偷了29天以后,树上只剩下2个桃,问:树上原有多少个桃?
5、将30拆成若干个自然数的和,要求这些自然数个乘积尽量大,应如何拆?
6、有大,中,小三种包装的筷子27盒,他们分别装有18双,12双,8双筷子,一共有330双筷子,其中小盒数是中盒数的2倍。问:三种盒子各有多少盒?
7、每天早上李刚准时上学,张大爷也同时散步。两人相向而行,而且每天在同一时刻相遇。一天李刚早出门,比平时早7分钟与张大爷相遇,李刚速度每分钟70米,张大爷每分钟40米
求李刚比平时早出门多少分???
8、有一圆锥如下图.A,B在同一母线上,B为AO的中点,试求以A为起点,以B为终点且绕圆锥侧面一周的最短路线。
O
B
A
9、下图所示为一个棱长6厘米的正方体。从正方体的底面向内挖去一个最大的圆锥体,求剩下的体积是原正方体的百分之几?(保留一位小数)
10、小玲沿某公路以每小时4千米速度步行上学,沿途发现每隔9分钟有一辆公共汽车从后面超过她,每隔7分钟遇到一辆迎面而来的公共汽车,若汽车发车的间隔时间相同,而且汽车的速度相同,求公共汽车发车的间隔是多少分钟?
❸ 世界上最难的数学问题是什么
你好!
1 界曾将10道无人能解的数学难题,作为世界10大数学难题,并允诺谁能解决任何一道,便给予100万美元的奖励!
2 据我所知有3道被攻克。
目前国际上大多数学家认为最难的数学题为18世纪问世的歌德巴赫猜想,目前世界上最接近理想答案的解答是我国数学家陈景润的"1+2",离最终的”1+1”只有一步之遥
3特别申明:1+2,1+1,绝不是那些傻瓜说的1+1=2的证明
❹ 世界上最难的数学题是什么
哥德巴赫猜想(Goldbach Conjecture)
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个n ?? 6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个n ?? 9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:
6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,
16 = 5 + 11, 18 = 5 + 13, . . . . 等等。
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理(Chen‘s Theorem) ?? “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。
在陈景润之前,关于偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称 “s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。
1924年,德国的拉特马赫(Rademacher)证明了 “7 + 7 ”。
1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。
1937年,意大利的蕾西(Ricei)先后证明了 “5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。
1938年,苏联的布赫 夕太勃(Byxwrao)证明了 “5 + 5 ”。
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。
1948年,匈牙利的瑞尼(Renyi)证明了 “1 + c ”,其中c是一很大的自然 数。
1956年,中国的王元证明了 “3 + 4 ”。
1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”,
中国的王元证明了 “1 + 4 ”。
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了 “1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。 圆周率圆周率简介 圆周率是指平面上圆的周长与直径之比。用希腊字母 π (读“Pài”)表示。中国古代有圆率、周率、周等名称。(在一般计算时π人们都把π这无限不循环小数化成3.14) 圆周率的历史 古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≒3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。 中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。 南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的着作中,欧洲称之为安托尼斯率。 阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。 无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加。1706年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。 电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下新的纪录。至今,最新纪录是小数点后12411亿位。 除π的数值计算外,它的性质探讨也吸引了众多数学家。1761年瑞士数学家兰伯特第一个证明π是无理数。1794年法国数学家勒让德又证明了π^2也是无理数。到1882年德国数学家林德曼首次证明了π是超越数,由此否定了困惑人们两千多年的“化圆为方”尺规作图问题。还有人对π的特征及与其它数字的联系进行研究。如1929年苏联数学家格尔丰德证明了e^π 是超越数等等。
圆周率的计算古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。 十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。 进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。 历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的威廉·山克斯,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。 把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用鲁道夫算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否是循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。 现在的人计算圆周率, 多数是为了验证计算机的计算能力的,还有,就是为了兴趣。 圆周率的运算方法古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。阿基米德用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;鲁道夫用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其它公式和由这些经典公式衍生出来的公式,就不一一列举了。 1、马青公式 π=16arctan1/5-4arctan1/239 这个公式由英国天文学教授约翰·马青于1706年发现。他利用这个公式计算到了100位的圆周率。马青公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。 还有很多类似于马青公式的反正切公式。在所有这些公式中,马青公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,马青公式就力不从心了。 2、拉马努金公式 1914年,印度天才数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。 1989年,大卫·丘德诺夫斯基和格雷高里·丘德诺夫斯基兄弟将拉马努金公式改良,这个公式被称为丘德诺夫斯基公式,每计算一项可以得到15位的十进制精度。1994年丘德诺夫斯基兄弟利用这个公式计算到了4,044,000,000位。丘德诺夫斯基公式的另一个更方便于计算机编程的形式是: 3、AGM(Arithmetic-Geometric Mean)算法 高斯-勒让德公式: </B>这个公式每迭代一次将得到双倍的十进制精度,比如要计算100万位,迭代20次就够了。1999年9月,日本的高桥大介和金田康正用这个算法计算到了圆周率的206,158,430,000位,创出新的世界纪录。 4、波尔文四次迭代式: </B>这个公式由乔纳森·波尔文和彼得·波尔文于1985年发表,它四次收敛于圆周率。 5、ley-borwein-plouffe算法 </B>这个公式简称BBP公式,由David Bailey, Peter Borwein和Simon Plouffe于1995年共同发表。它打破了传统的圆周率的算法,可以计算圆周率的任意第n位,而不用计算前面的n-1位。这为圆周率的分布式计算提供了可行性。 6、丘德诺夫斯基公式: 这是由丘德诺夫斯基兄弟发现的,十分适合计算机编程,是目前计算机使用较快的一个公式。以下是这个公式的一个简化版本: 丘德诺夫斯基公式7.韦达的公式 1593年,是π的最早分析表达式。2/π=√2/2×√(2+√2)/2×√〔2+√(2+√2)〕×~~~ 表示π的级数较着名的表示π的级数有莱布尼茨级数 π/4=1-1/3+1/5-1/7+1/9…… 以及威廉姆斯无穷乘积式 π/2=2*2/3*4/3*4/5*6/5*6/7*8/7*8/9…… 我们就莱布尼茨级数加以证明: 先给出等比级数 1+q+q^2+q^3+q^4+……+q^(n-1)=(1-q^n)/(1-q) 移项得到 1/q=1+q+q^2+ ……+q^(n-1)+q^n/(1-q) 令q=-x^2,得到 1/(1+x^2)=1-x^2+x^4-x^6+……+(-1)^(n-1)*x^(2n-2)+(-1)^n*x^2n/(1+x^2) 将左右两端做出从0到1的积分,则左端为 ∫下限0 上限1 dx/(1+x^2)=arctan1-arctan0=π/4 右端为1-1/3+1/5-1/7+1/9……+(-1)^n*∫下限0 上限1 x^2n/(1+x^2)dx 现在将证明右端末项(-1)^n*∫下限0 上限1 x^2n/(1+x^2)dx 当n趋于正无穷大时趋于0 关于积分,有不等式:若f(x)≤g(x),则∫下限a 上限b f(x)dx≤∫下限a 上限b g(x)dx 对于x∈[0,1],有x^2n/(1+x^2)≤x^2n 故∫下限a 上限b x^2n/(1+x^2)dx≤∫下限a 上限b x^2ndx 不等式右端结果是1/(2n+1),显然n→+∞时1/(2n+1)→0,所以∫下限a 上限b x^2n/(1+x^2)dx也趋于0。 于是n增大时,1-1/3+1/5-1/7+1/9……趋于π/4,公式得证。 圆周率的计算历史时间纪录创造者小数点后位数 所用方法 前2000 古埃及人 0 前1200中国 0 前500 《旧约全书》0(周三径一) 前250阿基米德3 263 刘徽5 古典割圆术 480 祖冲之 7 1429 Al-Kashi 14 1593 Romanus 15 1596 鲁道夫 20 古典割圆术 1609 鲁道夫 35 1699 夏普 71 夏普无穷级数 1706 马青(梅钦) 100 马青公式 1719 (法)德·拉尼 127(112位正确)夏普无穷级数 1794(奥地利)乔治·威加 140 欧拉公式 1824 (英)威廉·卢瑟福 208(152位正确)勒让德公式 1844 Strassnitzky & Dase 200 1847 Clausen 248 1853 Lehmann 261 1853 Rutherford 440 1874 威廉·山克斯 707(527位正确) 20世纪后 年 月 纪录创造者 所用机器 小数点后位数 1946 (英)弗格森 620 1947 1 (英)弗格森 710 1947 9 Ferguson & Wrench 808 1949 Smith & Wrench 1,120 1949 Reitwiesner et alENIAC 2,037 1954 Nicholson & JeenelNORC3,092 1957 Felton Pegasus 7,480 1958 1 Genuys IBM704 10,000 1958 5 Felton Pegasus 10,021 1959 Guilloud IBM 704 16,167 1961 Shanks & Wrench IBM 7090 100,265 1966 Guilloud & Filliatre IBM 7030 250,000 1967 Guilloud & Dichampt CDC 6600 500,000 1973 Guilloud & Bouyer CDC 7600 1,001,250 1981 Miyoshi & Kanada FACOM M-200 2,000,036 1982 Guilloud 2,000,050 1982 Tamura MELCOM 900II 2,097,144 1982 Tamura & Kanada HITACHI M-280H 4,194,288 1982 Tamura & Kanada HITACHI M-280H 8,388,576 1983 Kanada, Yoshino & Tamura HITACHI M-280H 16,777,206 1985 10 Gosper Symbolics 3670 17,526,200 1986 1 Bailey CRAY-2 29,360,111 1986 9 Kanada & Tamura HITACHI S-810/20 33,554,414 1986 10 Kanada & Tamura HITACHI S-810/20 67,108,839 1987 1 Kanada, Tamura & Kubo et al NEC SX-2 134,217,700 1988 1 Kanada & Tamura HITACHI S-820/80 201,326,551 1989 5 Chudnovskys CRAY-2 & IBM-3090/VF 480,000,000 1989 6 Chudnovskys IBM 3090 525,229,270 1989 7 Kanada & Tamura HITACHI S-820/80 536,870,898 1989 8 Chudnovskys IBM 3090 1,011,196,691 1989 11 Kanada & Tamura HITACHI S-820/80 1,073,741,799 1991 8 Chudnovskys 2,260,000,000 1994 5 Chudnovskys 4,044,000,000 1995 8 Takahashi & Kanada HITACHI S-3800/480 4,294,967,286 1995 10 Takahashi & Kanada 6,442,450,938 1997 7 Takahashi & Kanada 51,539,600,000 1999 4 Takahashi & Kanada 68,719,470,000 1999 9 Takahashi & Kanada HITACHI SR8000 206,158,430,000 2002 Takahashi Team 1,241,100,000,000圆周率的最新计算纪录1、新世界纪录 圆周率的最新计算纪录由日本人金田康正的队伍所创造。他们于2002年算出π值1,241,100,000,000 位小数,这一结果打破了他们于1999年9月18日创造的206,000,000,000位小数的世界纪录。至今,最新纪录是——法国一工程师将圆周率算到小数点后2,700,000,000,000 2、个人计算圆周率的世界纪录 在一个现场解说验证活动中,一名59岁日本老人Akira Haraguchi将圆周率π算到了小数点后的83431位,这名孜孜不倦的59岁老人向观众讲解了长达13个小时,最终获得认同。这一纪录已经被收入了Guinness(吉尼斯)世界大全中。据报道,此前的纪录是由一名日本学生于1995年计算出的,当时的精度是小数点后的42000位。 3、背诵圆周率记录 2006年,吕超将圆周率背诵到小数点后67890位,第67891位将0背为5发生错误,挑战结束,背诵过程长达24时04分。 一些有趣的数字序列在π小数点后出现的位置数字序列出现的位置 01234567891:26,852,899,245 及 41,952,536,161 99,972,955,571 及 102,081,851,717 171,257,652,369 01234567890:53,217,681,704 及 148,425,641,592 432109876543:149,589,314,822 543210987654:197,954,994,289 98765432109:123,040,860,473 及 133,601,569,485 及 150,339,161,883 183,859,550,237 09876543210:42,321,758,803 及 57,402,068,394 83,358,197,954 10987654321:89,634,825,550 及 137,803,268,208 152,752,201,245 27182818284:45,111,908,393
❺ 史上最难数学题
这个题目,不考虑复活的话,那500万只蚂蚁就需要1000万秒=166666分=2777小时=115.74天,这个是在不休息的情况下得到的结果,如果说每踩死3只又复活1只,那时间又要增加1.5倍,也就是需要173天。如果一天工作8小时的话,就是·1388天,也就是3.80年。
❻ 现在世界最难的数学题是什么
根本就不是1+1=2,而是1+1
双面叫1+1我想几乎很少有人知道
所谓的1+1就是大于第一个素数“2”的1次方加1的偶数(即n>2+1)都是一个素数加上一个素数之和
而不是什么1+1=2
1+1=2是一个公里,是被定义着的,根本不需要证明,1+1是哥德巴赫猜想的终极猜测
我国数学家陈景润证明的1+2是世界上最接近哥德巴赫猜想的
(1+2)是大于第二个素数“3”的2次方加1的偶数(即n〉3x3+1=10)都是一个素数加上二个素数乘积之和。例如12=3×3+3。
❼ 世界上最难的数学题是什么答案又是什么
据说是这个:
最难的数学题是证明题“哥德巴赫猜想”.
哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和.考虑把偶数表示为两数之和,而每一个数又是若干素数之积.如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b".1966年,陈景润证明了"1+2",即"任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和".离猜想成立即"1+1"仅一步之遥.
❽ 世界上最难的数学题到底是什么
费马最后定理
对于任意不小于3的正整数 ,x^n + y^n = z ^n 无正整数解
哥德巴赫猜想
对于任一大于2的偶数都可写成两个质数之和,即1+1问题
NP完全问题
是否存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是着名的NP=P?的猜想
霍奇猜想
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合
庞加莱猜想
庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题
黎曼假设
德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。着名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上
杨-米尔斯存在性和质量缺口
纳卫尔-斯托可方程的存在性与光滑性
BSD猜想
像楼下说的1+1=2 并不是什么问题的简称 而就是根据皮亚诺定理得到的一个加法的基本应用,是可以简单通过皮亚诺定理和自然数公理解决的
❾ 世界上最难的数学题目是什麽
11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久,泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,美国着名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。
高速数字计算机的发明,促使更多数学家对“四色问题”的研究。从1936年就开始研究四色猜想的海克,公开宣称四色猜想可用寻找可约图形的不可避免组来证明。他的学生丢雷写了一个计算程序,海克不仅能用这程序产生的数据来证明构形可约,而且描绘可约构形的方法是从改造地图成为数学上称为“对偶”形着手。
他把每个国家的首都标出来,然后把相邻国家的首都用一条越过边界的铁路连接起来,除首都(称为顶点)及铁路(称为弧或边)外,擦掉其他所有的线,剩下的称为原图的对偶图。到了六十年代后期,海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组。在海克的研究中第一次以颇不成熟的形式出现的“放电法”,这对以后关于不可避免组的研究是个关键,也是证明四色定理的中心要素。
电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序。就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。
这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。
“四色问题”的被证明仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点。在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。
不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍由不少数学家和数学爱好者在寻找更简洁的证明方法。
哥德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和。
这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。
从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
中国数学家陈景润于1966年证明:任何充份大的偶数都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积。”通常这个结果表示为 1+2。这是目前这个问题的最佳结果。
❿ 世界上无人能解的数学题是什么
世界上最难的数学题:NP完全问题。
NP问题简单的举例来说,就是如果让别人将碎片拼成完整的杯子,这个问题的解决方式是随机的,且解决起来比较困难,但是结果就是一个完整的杯子,那么你是可以轻易的验证出来的,而P类问题则是说让别人去数杯子碎片有多少个,而这种问题是比较容易解决,而且验证过程就是解决过程。
np完全问题通俗理解
所以很多数学家至今都没有解开NP是否属于P这样一个问题,因为假设NP等于P,那么这个世界上的很多问题都没有思考的意义了,因为你知道答案后就意味着已经解决,那么人人几乎都是爱因斯坦,而很多的科学难题也都可以被任何一个普通人解开。
那么如果NP不等于P呢?这又会出现一个悖论,也就是当我正好在NP多项式的解决思路中选中了正确的那一条,也就是类似于P的那一条,那么NP就等于P了,所以这也是不成立的。那么NP和P的关系就变得极为难以确定,这也是计算机领域中比较难的一个问题。
还有一个比较简单的比喻则是,当你在一个宴会上想要从众多的参与者当中找到宴会的主人,那么你就需要一个一个的依次看过去,而当别人告诉你具体的范围后,你就能一眼看到宴会的主人,这就是NP问题。就像十大无解数学题一样,这个世界上最难的数学题至今也没有人能够解开。