A. 数学符号log是什么意思
一种数学计算的符号。英语名词:logarithms。如果a^b=n,那么log(a)(n)=b。其中,a叫做“底数”,n叫做“真数”,b叫做“以a为底的n的对数”。
log(a)(n)函数叫做对数函数。
B. 对数符号“log”、“ln” 是什么意思
对数符号“log”最早是由莱布尼兹在数学书中引进的。它的正源来自于拉丁文logaritus(对数)的前三个字母,进一步的缩写lg则表示以10为底的对数即常用对数。常用对数也叫布里格斯对数。如果以无理数e为底,c=2.718 281 828 459 045…=C. 数学中log什么意思
log表示对数。
如果a^n = b(a>0,且a≠1),那么数n叫做以a为底b的对数,记做n=log(a)b,【a是下标】其中,a叫做“底数”,b叫做“真数”。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
(3)数学符号log是什么意思扩展阅读:
特殊的对数:
(1)ln。自然对数以常数e为底数的对数。记作lnN(N>0)。在物理学,生物学等自然科学中有重要的意义。一般表示方法为lnx。数学中也常见以logx表示自然对数。
(2)LG(以10为底的对数)对数函数lg,是以10为底的对数(常用对数),如lg 10=1。lg即为log10。
D. 数学中log什么意思
log(logarithms)一般指对数。
在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。 在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
如果a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。
对数函数与指数的关系
同底的对数函数与指数函数互为反函数。
当a>0且a≠1时,ax=N,x=㏒aN。
关于y=x对称。
对数函数的一般形式为 y=㏒ax,它实际上就是指数函数的反函数(图像关于直线y=x对称的两函数互为反函数),可表示为x=ay。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。
可以看到,对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
以上内容参考 网络-对数函数;网络-log
E. log是什么意思
log在数学中是指对数函数。
“log”是“logarithm”的缩写,是对数函数的意思。常写作函数 y=log(a) x,意思是数x叫做以a为底N的对数。对数和幂运算是相对的,常用的对数函数以10为底的对数,记为lg、以无理数e为底,记为ln。
(5)数学符号log是什么意思扩展阅读:
对数在数学内外有许多应用。这些事件中的一些与尺度不变性的概念有关。例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放。这引起了对数螺旋。Benford关于领先数字分配的定律也可以通过尺度不变性来解释。
对数也与自相似性相关。例如,对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题。自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数。对数刻度对于量化与其绝对差异相反的值的相对变化是有用的。
此外,由于对数函数log(x)对于大的x而言增长非常缓慢,所以使用对数标度来压缩大规模科学数据。对数也出现在许多科学公式中,例如Tsiolkovsky火箭方程,Fenske方程或能斯特方程。
F. 数学中的log是什么意思
log在高中数学里表示对数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。另外,在科学计数中常使用以无理数e=2.71828···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把logeN记为In N。
2、恒等式及证明
a^log(a)(N)=N (a>0 ,a≠1)
对数公式运算的理解与推导by寻韵天下(8张)
推导:log(a) (a^N)=N恒等式证明
在a>0且a≠1,N>0时
设:当log(a)(N)=t,满足(t∈R)
则有a^t=N;
a^(log(a)(N))=a^t=N。
G. log 是什么 数学里的 在算的时候怎么算
log是对数计算符号。
如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。
对数相关运算公式示例如下:
1、alogab=b a^{log(a^b)}=b
2、loga(MN)=logaM+logaNlog{a^(MN)}=log(a^M)+log(a^N)
3、loga(M÷N)=logaM-logaN log{a^(M/N)}=log(a^M)-log(a^N)
4、loga(Mn)=nlogaM log{a^(M^n)}=nlog(a^M)
5、log(an)(M)=1/nlogaMlog{(a^n)^M}=1/nlog(a^M)
(7)数学符号log是什么意思扩展阅读:
特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lg。
称以无理数e(e=2.71828...)为底的对数称为自然对数(natural logarithm),并记为ln。
对数在数学内外有许多应用。这些事件中的一些与尺度不变性的概念有关。例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放。这引起了对数螺旋。Benford关于领先数字分配的定律也可以通过尺度不变性来解释。对数也与自相似性相关。
例如,对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题。自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数。
H. LOG是什么意思
log: 是对数符号,指数的反运算。5的3次方为125,5的3次方是指数运算,求5的几次方等于125就是对数运算,用log表示
多次根号:x的平方根或2次方根,表示求一个数y,y的平 方等于x;x的n次根,表示求一个数y,y的n次方等于x
函数:是用自变量x的表达式来表示另外一个量y的式子,这个式子即函数反映了y随x变化而变化的规律,如y=3x+5就是一个函数,表示自变量x的3倍加上5即是因变量y的值
I. 数学中的log
解答:(1)∵24^a=12,
∴a=log24(12)=log24(24/2)
=1-log24(2),
∴log24(2)=1-a.
(2)
∵a=log7(8/7)=3log7(2)-1,
B=log7(50/7)=log7(2)+2log7(5)-1,
∴
log7(2)=(a+1)/3,
log7(5)=(3b-a+2)/6,
log7(10)=
log7(2)
+log7(5)=(a+1)/6+(3b-a+2)/6
=(3b+a+4)/6.
(3)
∵logx²(y)+logy²(x)=1,
∴1/2logx(y)+
1/2logy(x)=1,
即logx(y)+logy(x)=2,
∵logx(y)与logy(x)互为倒数,logx(y)+logy(x)≥2,
而logx(y)+logy(x)=2,∴logx(y)=logy(x)
,
∴y=x(x>0且x≠1).
(4)nlog2(3)•1/nlog9(32)=n•1/nlog2(3)log9(2^5)
=log2(3)•5/2log3(2)
=5/2.
(5)2^m-mlg2-4=2^log2(5)-log2(5)×lg2-4
=5-lg5-4=1-lg5=lg2=0.3010.
(6)log2(96)=log2(32×3)=5+log2(3)=5+1/a.
(7)左边=log(b+c)(a)+log(c-b)(a)=lga/lg(b+c)+lga/lg(c-b)
=[lgalg(c-b)+lgalg(c+b)]/lg(c-b)lg(c+b)
=[lgalg(c²-b²)]/lg(c-b)lg(c+b)
=[lgalga²]/
lg(c-b)lg(c+b)=2lg²a/lg(c-b)lg(c+b),
右边=2log(b+c)(a)log(c-b)(a)=2lgalga/lg(c+b)lg(c-b)
=2lg²a/lg(c+b)lg(c-b),
∴左边=右边,∴原等式成立。
J. 高中数学里 log是什么意思
log在高中数学里表示对数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。另外,在科学计数中常使用以无理数e=2.71828···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把logeN记为In N。
2、恒等式及证明
a^log(a)(N)=N (a>0 ,a≠1)
对数公式运算的理解与推导by寻韵天下(8张)
推导:log(a) (a^N)=N恒等式证明
在a>0且a≠1,N>0时
设:当log(a)(N)=t,满足(t∈R)
则有a^t=N;
a^(log(a)(N))=a^t=N。