导航:首页 > 数字科学 > 高一数学课本有哪些

高一数学课本有哪些

发布时间:2022-01-24 19:24:31

‘壹’ 高中数学课本有哪些

这个好像还跟各个地区各个学校的具体情况有关! 以下是我们学校的,仅供参考: 必修的有5本,选修的有6本,一共是11本; 必修:必修一,必修二,必修三,必修四,必修五; 选修:选修2—1,选修2—2,选修2—3,选修4—1,选修4—4,选修4—5。

‘贰’ 高一有哪些课本

数学,语文,英语:必修1,必修2,化学,物理:必修1,地理,历史,政治:必修1,生物各个学校开课时间不一样。

高中是高级中学(middle school)的简称,在中国中学分为初级中学与高级中学,属于中等教育的范畴。

高中是中国九年义务教育结束后更高等的教育机构,上接初中,下启大学,一般为三年制。中国的高中教育指初中以后高中阶段的教育,包括普通高中、职业高中、中等专业学校、技工学校等,均属于中等教育的范畴。

中国的官学教育在清末学制改革之前,基本上沿袭传统的中央官学和地方官学两大类。中央的国子监相当于大学性质,地方的府州县学具有中等教育性质,而城乡的社学、义学之类则是小学教育性质。

‘叁’ 高中数学课本有哪些

你好。我是高二理科生
要学的有必修①②③④⑤选修2-1
2-2
2-3
4-4
4-5
其中必修①主要学集合与函数
必修②主要学几何
点线面的位置关系
线性问题
必修③主要学统计
概率
必修④主要学三角函数
平面向量
必修⑤主要学解三角形
数列与不等式
选修2-1主要学逻辑用语
圆锥曲线
空间向量与立体几何
选修2-2主要学
推理证明
导数与定积分
选修2-3主要学
计数原理
随机变量及其分布
选修4-4主要学坐标系与参数方程
选修4-5主要学不等式选讲
至于选修3-4学的是
对称与群
(没学)
理科生要学文科省选修的吗?
要学需要会考的文科(政治,历史,地理)但学的都是“必修”的,选修的不必学
没有单独理科生选修的课本

‘肆’ 高一需要用到哪些书(课本)

其实这个你现在也不用着急,可以先复习之前学过的东西,好好复习好了,后面学起来就很轻松了。加油,最主要的还是要学会复习,有一套自己的复习方法很重要的,手里有再好的资料,有名师上着课,如果不复习,那效果也是不行的,以下一些复习方法,希望能帮到你:
一、回归课本为主, 找准备考方向
学生根据自己的丢分情况,找到适合自己的备考方向。 基础差的学生,最好层层追溯到自己学不好的根源。 无论哪个学科, 基本上都是按照教材层层关联的, 希望基础不好的同学以课本为主,配套练习课本后的练习题,以中等题、简单题为辅、 逐渐吃透课本,也渐渐提高信心。只要把基础抓好, 那么考试时除了一些较难的题目, 基本上都可以凭借能力拿下,分数的高低仅剩下发挥的问题。
二、循序渐进,切忌急躁
在复习的时候, 由于是以自己为主导, 有时候复习的版块和教学进度不同,当考试时会发现没有复习到的部分丢分严重。导致成绩不高。 但是已经复习过的版块,却大多能够拿下。这就是进步,不要因为用一时的分数高低做为衡量标准,复习要循序渐进,不要急躁。复习就像修一 条坑坑洼洼的路, 每个坎坷都是障碍,我们只有认真的从起点开始,按照顺序慢慢推平。哪怕前面依旧沟整,但是当你回头的时候,展现在你眼前的是一条康庄大道。基本上, 如果纯做题的话, 1 -2个月时间就能把各科的试题从第一章节到最后一个章节摸得差不多。
三、合理利用作业试题、 试卷
简单题、中等题一方面可以印证、检验自己的基础知识体系, 又一方面可以提升我们复习的信心。在选择作业上,简单题、中等题尤其是概念理解应用题一 定要自己动手做,还要进行总结。 难题可以参考答案, 但要认真思考其中的步骤推导思想和转化思想,这些都是考试所考察的。语文要充分利用试卷,其中的成语、病句要注重收集,文言文虚实词记得要摘录。英语单词注意把正确选项带人念熟。 同时思考阅读、完型题是如何找到有效的原文信息,他们有何特点和提示点? 要这么去利用每一次作业和试卷,那么成绩将会短期内提高。
四、建立信心, 不计一时得失
有些学生自认为自己是差生, 无可救药了。但是事实上往往不是这样。有些学生认为自己天生比别人笨, 不如别人聪明。也许在某一方面上确实是有自身的缺陷,但是却忽略了自己的优势所在。为了自己心中那份或许并不是十分确定的梦想,一定要打起精神。前面也说过,考试不要记一时得失,而是要不断的总结归纳。中等生,只要你不放弃,找到自己的缺陷,严格给自己定下复习要求并认真执行,就能达到。

‘伍’ 高一数学课本一共有几个必修

楼下不正解,我就是准备升高二的,我在高一学了4本必修

‘陆’ 【人教版】高中数学教材总目录

总目录如下:

必修一

第一章 集合

1.集合的含义与表示

2.集合的基本关系

3.集合的基本运算

3.1交集与并集

3.2全集与补集

第二章 函数

1.生活中的变量关系

2.对函数的进一步认识

2.1函数的概念

2.2函数的表示方法

2.3映射

3.函数的单调性

4.二次函数性质的再研究

4.1二次函数的图像

4.2二次函数的性质

5.简单的幂函数

第二章 指数函数与对数函数

1.正指数函数

2.指数扩充及其运算性质

2.1指数概念的扩充

2.2指数运算是性质

3.指数函数

3.1指数函数的概念

3.2指数函数 的图像和性质

3.3指数函数的图像和性质

4.对数

4.1对数及其运算

4.2换底公式

5.对数函数

5.1对数函数的概念

5.2 的图像和性质

5.3对数函数的图像和性质

6.指数函数、幂函数、对数函数增长的比较

第四章 函数的应用

1.函数和方程

1.1利用函数性质判定方程解的存在

1.2利用二分法求方程的近似解

2.实际问题的函数建模

2.1实际问题的函数刻画

2.2用函数模型解决实际问题

2.3函数建模案例

必修二

第一章 立体几何初步

1.简单几何体

1.1简单旋转体

1.2简单多面体

2.直观图

3.三视图

3.1简单组合体的三视图

3.2由三视图还原成实物图

4.空间图形的基本关系与公理

4.1空间图形基本关系的认识

4.2空间图形的公理

5.平行关系

5.1平行关系的判定

5.2平行关系的性质

6.垂直关系

6.1垂直关系的判定

6.2垂直关系的性质

7.简单几何体的面积和体积

7.1简单几何体的侧面积

7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积

7.3球的表面积和体积

第二章 解析几何初步

1.直线和直线的方程

1.1直线的倾斜角和斜率

1.2直线的方程

1.3两条直线的位置关系

1.4两条直线的交点

1.5平面直接坐标系中的距离公式

2.圆和圆的方程

2.1圆的标准方程

2.2圆的一般方程

2.3直线与圆、圆与圆的位置关系

3.空间直角坐标系

3.1空间直接坐标系的建立

3.2空间直角坐标系中点的坐标

3.3空间两点间的距离公式

必修三

第一章 统计

1.从普查到抽样

2.抽样方法

2.1简单随机抽样

2.2分层抽样与系统抽样

3.统计图表

4.数据的数字特征

4.1平均数、中位数、众数、极差、方差

4.2标准差

5.用样本估计总体

5.1估计总体的分布

5.2估计总体的数字特征

6.统计活动:结婚年龄的变化

7.相关性

8.最小二乘估计

第二章 算法初步

1.算法的基本思想

1.1算法案例分析

1.2排序问题与算法的多样性

2.算法框图的基本结构及设计

2.1顺序结构与选择结构

2.2变量与赋值

2.3循环结构

3.几种基本语句

3.1条件语句

3.2 循环语句

第三章 概率

1.随机事件的概率

1.1频率与概率

1.2生活中的概率

2.古典概型

2.1古典概型的特征和概率计算公式

2.2建立概率模型

2.3互斥事件

3.模拟方法——概率的应用

必修四

第一章 三角函数

1.周期现象

2.角的概念的推广

3.弧度制

4.正弦函数和余弦函数的定义与诱导公式

4.1任意角的正弦函数、余弦函数的定义

4.2单位圆与周期性

4.3单位圆与诱导公式

5.正弦函数的性质与图像

5.1从单位圆看正弦函数的性质

5.2正弦函数的图像

5.3正弦函数的性质

6.余弦函数的图像和性质

6.1余弦函数的图像

6.2余弦函数的性质

7.正切函数

7.1正切函数的定义

7.2正切函数的图像和性质

7.3正切函数的诱导公式

8.函数的图像

9.三角函数的简单应用

第二章 平面向量

1.从位移、速度、力到向量

1.1位移、速度和力

1.2向量的概念

2.从位移的合成到向量的加法

2.1向量的加法

2.2向量的减法

3.从速度的倍数到数乘向量

3.1数乘向量

3.2平面向量基本定理

4.平面向量的坐标

4.1平面向量的坐标表示

4.2平面向量线性运算的坐标表示

4.3向量平行的坐标表示

5.从力做的功到向量的数量积

6.平面向量数量积的坐标表示

7.向量应用举例

7.1点到直线的距离公式

7.2向量的应用举例

第三章 三角恒等变形

1.同角三角函数的基本关系

2.两角和与差的三角函数

2.1两角差的余弦函数

2.2两角和与差的正弦、余弦函数

2.3两角和与差的正切函数

3.二倍角的三角函数

必修五

第一章 数列

1.数列

1.1数列的概念

1.2数列的函数特性

2.等差数列

2.1等差数列

2.2等差数列的前n项和

3.等比数列

3.1等比数列

3.2等比数列的前n项和

4.数列在日常经济生活中的应用

第二章 解三角形

1.正弦定理与余弦定理

1.1正弦定理

1.2余弦定理

2.三角形中的几何计算

3.解三角形的实际应用举例

第三章 不等式

1.不等关系

1.1不等关系

1.2不等关系与不等式

2.一元二次不等式

2.1一元二次不等式的解法

2.2一元二次不等式的应用

3.基本不等式

3.1基本不等式

3.2基本不等式与最大(小)值

4.简单线性规划

4.1二元一次不等式(组)与平面区域

4.2简单线性规划

4.3简单线性规划的应用

选修2-1

第一章 常用逻辑用语

1.命题

2.充分条件与必要条件

2.1充分条件

2.2必要条件

2.3充要条件

3.全称量词与存在量词

3.1全称量词与全称命题

3.2存在量词与特称命题

3.3全称命题与特称命题的否定

4.逻辑连结词“且”“或”“非”

4.1逻辑连结词“且”

4.2逻辑连结词“或”

4.3逻辑连结词“非”

第二章 空间向量与立体几何

1.从平面向量到空间向量

2.空间向量的运算

3.向量的坐标表示和空间向量基本定理

3.1空间向量的标准正交分解与坐标表示

3.2空间向量基本定理

3.3空间向量运算的坐标表示

4.用向量讨论垂直与平行

5.夹角的计算

5.1直线间的夹角

5.2平面间的夹角

5.3直线与平面的夹角

6.距离的计算

第三章圆锥曲线与方程

1.椭圆

1.1椭圆及其标准方程

1.2椭圆的简单性质

2.抛物线

2.1抛物线及其标准方程

2.2抛物线的简单性质

3.双曲线

3.1双曲线及其标准方程

3.2双曲线的简单性质

4.曲线与方程

4.1 曲线与方程

4.2圆锥曲线的共同特征

4.3直线与圆锥曲线的交点

选修2-2

第一章 推理与证明

1.归纳与类比

1.1归纳推理

1.2类比推理

2.综合法与分析法

2.1综合法

2.2分析法

3.反证法

4.数学归纳法

第二章 变化率与导数

1.变化的快慢与变化率

2.导数的概念及其几何意义

2.1导数的概念

2.2导数的几何意义

3.计算导数

4.导数的四则运算法则

4.1导数的加法与减法法则

4.2导数的乘法与除法法则

5.简单复合函数的求导法则

第三章 导数的应用

1.函数的单调性与极值

1.1导数与函数的单调性

1.2函数的极值

2.导数在实际问题中的应用

2.1实际问题中导数的意义

2.2最大值、最小值问题

第四章 定积分

1.定积分的概念

1.1定积分的背景——面积和路程问题

1.2定积分

2.微积分基本定理

3.定积分的简单应用

3.1平面图形的面积

3.2简单几何体的体积

第五章 数系的扩充与复数的引入

1.数系的扩充与复数的引入

1.1数的概念的扩展

1.2复数的有关概念

2.复数的四则运算

2.1复数的加法与减法

2.2复数的乘法与除法

(6)高一数学课本有哪些扩展阅读:

人教版即由人民教育出版社出版,简称为人教版。

数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。

其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká).

在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.

基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.

代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.

直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.

现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)。

数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身。

‘柒’ 高中数学人教版,一共有几本教材书,请列举出来

《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》、必修一到五、选修一到四。

1、《高中数学必修1》,即《普通高中课程标准实验教科书·数学必修1·A版》的简称)是2007年人民教育出版社出版的图书,作者是人民教育出版社课题材料研究所、中学数学课程教材研究开发中心。该书是高中数学学习阶段顺序必修的第一本教学辅助资料。

2、《高中数学A版必修2》,是2007年9月由人民教育出版社出版的图书,作者是王申怀。该书主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。

3、《高中数学必修3》,是新课标高中数学必修系列的第3本书籍,分为A、B两版,由人民教育出版社出版发行。本书主要内容是对算法,统计,概率知识的讲解与总结。

4、《高中数学必修4》,是2007年人民教育出版社出版图书,新课标教材,必修系列中第4本,普通高中课程标准实验教科书数学必修4 A版。

数学4(必修)的内容包括三角函数、平面向量、三角恒等变换。

5、《高中数学必修5》,是2006年人民教育出版社出版的图书。本册教科书包括“解三角形”、“数列”、“不等式”等三章内容。

本书要求学生适当的运用数学知识,解决生活中实际问题。本书高考占很大比例,主要集中于数学第一道大题中。

题型较为简单,但变化多端。书内分“观察”、“思考”、“探究”等模块,与“观察与猜想”、“阅读与思考”、“探究与发现”、“信息技术运用”等拓展性栏目。

‘捌’ 高中数学课本一共有几本啊

高中数学课本数目因各地使用的教材不同会有所不同,人教版教材一共需要学习八本书,分别为:

1、必修:

高中数学必修一、高中数学必修二、高中数学必修三、高中数学必修四、高中数学必修五

2、选修:

高中数学选修一、高中数学选修二、高中数学选修三

(8)高一数学课本有哪些扩展阅读

《高中数学》是由人民教育出版社出版的图书,该书由人民教育出版社、课程教材研究所、数学课程教材研究开发中心共同编制,内容包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。

‘玖’ 高中数学有几本课本

人教A版9本

人教B版有5本必修,4本选修

‘拾’ 高一数学总共几本课本

一共四本必修一、必修二一部份、必修四、必修五

阅读全文

与高一数学课本有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:700
乙酸乙酯化学式怎么算 浏览:1369
沈阳初中的数学是什么版本的 浏览:1315
华为手机家人共享如何查看地理位置 浏览:1007
一氧化碳还原氧化铝化学方程式怎么配平 浏览:845
数学c什么意思是什么意思是什么 浏览:1366
中考初中地理如何补 浏览:1256
360浏览器历史在哪里下载迅雷下载 浏览:667
数学奥数卡怎么办 浏览:1346
如何回答地理是什么 浏览:987
win7如何删除电脑文件浏览历史 浏览:1018
大学物理实验干什么用的到 浏览:1445
二年级上册数学框框怎么填 浏览:1657
西安瑞禧生物科技有限公司怎么样 浏览:812
武大的分析化学怎么样 浏览:1209
ige电化学发光偏高怎么办 浏览:1298
学而思初中英语和语文怎么样 浏览:1603
下列哪个水飞蓟素化学结构 浏览:1384
化学理学哪些专业好 浏览:1449
数学中的棱的意思是什么 浏览:1015