导航:首页 > 数字科学 > 数学说什么

数学说什么

发布时间:2022-04-28 21:43:03

㈠ 什么是数学说1下啊

1数学是什么?给数学下定义是一个困难的问题。任何定义都遇到同样的困难。例如,狗是人人都熟悉的动物,你试着给它下个定义,看看如何?
数学是一棵参天大树。它的根深深地扎在我们的现实世界。它有两个主干,一曰形─几何,一曰数─代数。
几何:空间形式的科学,视觉思维占主导,培养直觉能力,培养洞察力;
代数:数量关系的科学,有序思维占主导,培养逻辑推理能力。
如果只研究数与形,那是静态的,属于常量数学的范围。分析来源于变化这一概念。只研究数与形是不够的,必须研究大小与形状是如何改变的。这就产生了微积分(17世纪)。它的延伸是,无穷级数,微分方程,微分几何等。
那么,什么是数学呢?19世纪恩格斯给数学下了这样的定义:
“数学是关于空间形式和数量关系的科学。”
2
数学的内容
大致说来,数学分为初等数学与高等数学两大部分。
初等数学中主要包含两部分:几何学与代数学。几何学是研究空间形式的学科,而代数学则是研究数量关系的学科。
初等数学基本上是常量的数学。
高等数学含有非常丰富的内容,以大学本科所学为限,它主要包含:
解析几何:用代数方法研究几何,其中平面解析几何部分内容已放到中学。
线性代数:研究如何解线性方法组及有关的问题。
高等代数:研究方程式的求根问题。
微积分:研究变速运动及曲边形的求积问题。作为微积分的延伸,物理类各系还要讲授常微分方程与偏微分方程。
概率论与数理统计:研究随机现象,依据数据进行推理。
所有这些学科构成高等数学的基础部分,在此基础上建立了高等数学的宏伟大厦。

㈡ 数学是研究什么的

数学是是研究数量、结构、变化、空间以及信息等概念的一门学科。

数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。

数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。

具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。

(2)数学说什么扩展阅读:

数学重要分支有:

一、数论

数论是纯粹数学的分支之一,主要研究整数的性质。整数可以是方程式的解(丢番图方程)。有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数(丢番图逼近)。

二、代数

代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。

三、几何

几何,就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。几何学发展历史悠长,内容丰富。它和代数、分析、数论等等关系极其密切。几何思想是数学中最重要的一类思想。

参考资料来源:网络—数学

㈢ 关于数学的资料

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。

而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.

基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.

代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.

直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.

现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).

(3)数学说什么扩展阅读:

数学分支

一、数学史

二、数理逻辑与数学基础a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科

三、数论

a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科

四、代数学

a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科

五、代数几何学

六、几何学

a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科

七、拓扑学

a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科

八、数学分析

a:微分学 b:积分学 c:级数论 d:数学分析其他学科

九、非标准分析

十、函数论

a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科

十一、常微分方程

a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科

十二、偏微分方程

a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科

十三、动力系统

a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科

十四、积分方程

十五、泛函分析

a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科

十六、计算数学

a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科

十七、概率论

a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科

十八、数理统计学

a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科

十九、应用统计数学

a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟

二十、应用统计数学其他学科

二十一、运筹学

a:线性规划 b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科

二十二、组合数学

二十三、模糊数学

二十四、量子数学

二十五、应用数学 (具体应用入有关学科)

二十六、数学其他学科

㈣ 数学说课说什么

△说教学程序
△说教法、学法
△说练习作业安排和板书设计
数学说课是数学教师间的业务交流,其根本宗旨是为了追求数学课的优化。
能制定较为完满的教学方案,为数学课堂教学的改进提供前提条件。这主要包括:
(1)介绍课时教学内容的地位、作用和意义。说课中教者首先要阐述所备、所上的数学课在整个的一节、一章乃至整个小学数学全套教材中的地位、作用和意义,而不是孤立地看待某课时教学内容。这是由数学教材环环相扣、具有严密的逻辑性和序列性所决定的。
(2)提出本课时的具体明确的教学目标。
教学目标是课时备课中所规划的课时结束时要实现的教学结果。课时目标越明确、越具体,反映教者的备课认识越充分,教法的设计安排越合理。说课中要注意避免千篇一律地提出“通过教学,使学生能正确计算××习题”一类的套话,要从识记、理解、掌握、应用四个层次上分析教学目标。课时目标制定中还要提出思维能力和非智力因素方面的培养目标,包括思想品德教育渗透和兴趣、习惯培养目标。
程序是否合理,符合认知规律,也是课堂教学是否优化的标准之一。数学说课中的教学程序有点近乎教案上的教学过程安排。在教案过程自己能清楚的可不必都写出来,而说课中不谈清楚,别人不一定都了解,详略、繁简不同;教案上重视具体教学内容安排,而说课介绍重视教学环节的次序和方式。备课只要备出是什么,说课不但要说是什么,还要说说为什么,让别人接受信服,内容构成不同。
说教学程序,还得注意运用概括和转述的语言,不必直接照搬教案,要尽可能少用课堂内师生的原话,以便压缩实录篇幅。
3.说教法。
引导学生学习数学所采用的主要方式。这是改进数学课堂教学的主要方面。比如,教学思路和策略上,可以选择目标教学的方法,尝试教学的方法,发现教学的方法,阅读自学的方法,组织小组讨论交流的方法等;教学信息和感知材料的呈现上,选用题组呈现或一题多变的方法,投影、录音的方法,教具模型演示的方法;在思维活动的组织上采取由实例列算式抽象的方法,从个别到一般的概括方法,由此及彼的类比推理方法,比较对照、区别异同的方法等等。指导学法方面,有指导学生阅读数学教材的方法。有组织学生按顺序有重点地观察的方法,有分析数量关系的方法,有安排学生操作、演示的方法等。叙述教法和学法,要注意坚持使教法学法有利于突出教材重点、突破难点,符合学生认识规律和年龄特征,不是为了翻花样,图形式花哨。4.说练习。
作业的安排和板书设计。练习作业是课堂教学中必不可少的活动,犹如工业生产中的“产后服务”。说课就要谈谈是如何安排练习作业的,比如从内容上围绕重点,巩固新知;从层次上逐层深化、拾级而上;从数量上适度适量,紧凑而可以完成等等。板书是教学内容的浓缩和集中反映,板书要醒目突出,具有内在合理性,要让人体察到教学的“序”,这就有必要在说课中予以陈述。当然有些数学课的板书并不都显得十分重要和突出,也可不必说。

㈤ 小学数学说课说什么

说课是教师在有限时间内将一节课的教学内容、教学设计及教学过程用简洁准确的语言表达出来,呈现给听众,它不失为考查教师教学基本功的一种有效方式。其根本宗旨是为了追求教学课的优化。那么数学说课,要向听众说什么?现根据本人多次参加说课比赛的体会谈谈粗浅的认识。一、说教材——教者阐述对教材的认识和理解。教者只有深刻理解教材、领会教材的意图,才能制定出较好的教案,为改进教学提供前提条件。它包括:(1)向听众介绍课时教学内容的地位、作用和意义。“说”者首先应阐述所备、所上的这课在整个一节、一单元至小学数学整套教材中的地位、作用和意义,并不是单纯地、孤立地分析课时教学内容。这是由数学教材环环紧扣、具有完整的有序性和严密的逻辑性决定的。(2)提出具体明确的课时教学目标。教学目标是课时备课所规划的课时结束时要实现的教学结果。课时目标越明确、越具体,说明教者的备课认识越充分,教法设计安排越合理。说教学目标时应从识记、理解、掌握、应用四层次逐层分析,努力避免“清一色”的“通过教学,使学生……”的套语。制定课时目标还应提出思维能力和非智力方面的培养目标。

㈥ 趣味数学主要讲的内容什么

《小学高年级趣味数学》内容简介:数学是小学最重要的课程之一.小朋友们每天都和数学打交道,你们发现了它的魅力了吗?有些小朋友会说:“数学有什么魅力呢?数学就是十个数字和几个运算符号而已,太枯燥了.”有些小朋友会说:“数学好难学啊!”但是,也一定会有小朋友会说:“数学太有趣了!我多么喜欢数学啊!”
其实,数学是所有学科中最有趣、最有魅力的课程之一.一位美学家曾说过:“美,只要人感受到它,它就存在,不被人感受到,它就不存在.”数学的魅力也是这样,发现了它的魅力之所在的小朋友就会非常喜欢它,而没有发现这种魅力的小朋友就会觉得数学又枯燥又难学.
三部分:1、某数学家的奇闻趣事.2、趣味数学题,计划3-5道.3、学好数学的方法

㈦ 什么叫数学

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。

而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

(7)数学说什么扩展阅读:

一、数学空间

空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常着名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。

数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。

在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。

二、数学标点

数学是一门国际性的学科,对各个方面都要求严谨。

我国规定初等及以上的数学已可以算作是科技类文献。

我国规定文献类文章句号必须用“.”,数学采用的目的一是为此,二是为了避免和下脚标混淆,三是因为我国曾在国际上投稿数学类研究报告,人家却不采用,因为外国的句号大多不是“。”.

在证明题中,∵(因为)后面要用“,”,∴(所以)后面要用“.”,在一道大题中若有若干小问,则每小问结束接“;”,最后一问结束用“.”,在①②③④这样的序号后都应用“;”表连接,最后一个序号后用“.”表结束.

㈧ 你认为数学是什么

对我来说数学是一种消遣,我喜欢那种沉浸在思考之中的感觉,那是一种忘我的状态,同时我也喜欢那种在解题之后得到的快乐。

数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。

数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。

数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。

基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。

㈨ 高中数学都说些什么

集合
函数
数列
三角函数
平面向量
直线与圆的方程
圆锥曲线(内容较难,计算量大)

直线、平面、简单几何体(空间想象力)
导数

阅读全文

与数学说什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:748
乙酸乙酯化学式怎么算 浏览:1413
沈阳初中的数学是什么版本的 浏览:1367
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:896
数学c什么意思是什么意思是什么 浏览:1424
中考初中地理如何补 浏览:1314
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1404
如何回答地理是什么 浏览:1038
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1495
二年级上册数学框框怎么填 浏览:1715
西安瑞禧生物科技有限公司怎么样 浏览:1013
武大的分析化学怎么样 浏览:1257
ige电化学发光偏高怎么办 浏览:1346
学而思初中英语和语文怎么样 浏览:1670
下列哪个水飞蓟素化学结构 浏览:1433
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1073