导航:首页 > 数字科学 > 数学分什么数

数学分什么数

发布时间:2022-04-28 23:56:25

Ⅰ 数学所有数的分类

数的最大集合是复数,复数集:实数、虚数
虚数分为:实部不为零的一般虚数、实部为零的纯虚数;虚数没有正负之分;
实数按符号分:正实数、零、负实数

(1)数学分什么数扩展阅读
自然数:即正整数,从0、1、2、3、4、5、6..
整数:包含正整数、0、负整数,.-5、-4、-3、-2、-1、0、1、2、3、4、5.
有理数,包含整数及小数(不包含无限不循环小数),通俗理解就是可以写成分数形式的数,所有有理数都可以用分数表示.
无理数:即无限不循环小数,不可以用分数形式表示.如圆周率,根号2等.
实数:实数就是有理数和无理数的统称
复数:复数是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位(即-1开方)

Ⅱ 数学中有哪些数

1.质数与合数
质数,又名素数,是指只能被1和自身整除的数。如2,3, 5, 7, 11……
合数,是指除了1与自身之外还有其他的约数,如4,除了1与4之外,它还能被2整除。
2、公因数、最大公约数和最小公倍数
公因数,又称公约数,在两个或两个以上的自然数中,如果它们有相同的因数,那么这些因数就叫做它们的公因数。任何两个自然数都有公因数1.(除零以外)而这些公因数中最大的那个称为这些正整数的最大公因数。
求几个整数的最大公因数,只要把它们的所有共有的素因数连乘,所得的积就是它们的最大公因数。
3、 实数与虚数
负数开平方,在实数范围内无解。
数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数。
实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。
于是,实数成为特殊的复数(缺序数部分),虚数也成为特殊的复数(缺实数部分)。
虚数单位为i, i即根号负1。
3i为虚数,即根号(-3), 即3×根号(-1)
2+3i为复数,(实数部分为2,虚数部分为3i)

复数和虚数不一样,形如a+bi的数。式中a,b 为实数,i是 一个满足i2=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。在复数a+bi中,a 称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张.
4、、有理数与无理数
有理数(rational number):能精确地表示为两个整数之比的数.

如3,-98.11,5.72727272……,7/22都是有理数.

整数和通常所说的分数都是有理数.有理数还可以划分为正有理数,0和负有理数.
无理数指无限不循环小数
非负整数集(或自然数集)记作 N 都指的那些?
N---0和自然数,如:0。1。2。3。。。
正整数集 记作 N + 都指的那些?
N+----正整数,如:1。2。3。。。。
整数集 记作 Z 都指的那些?
Z---正整数和负整数和0,如:。。。-2。-1。0。1。2。3。。。
实数集 记作 R 指的那些 ?
R---有理数和无理数
无限不循环小数和开根开不尽的数叫无理数
整数和分数统称为有理数
数学上,有理数是两个整数的比,通常写作 a/b,这里 b 不为零。分数是有理数的通常表达方法,而整数是分母为1的分数,当然亦是有理数。
数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογος ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。
所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。
5、 整数
整数(Integer):像-2,-1,0,1,2这样的数称为整数。(整数是表示物体个数的数,0表示有0个物体)整数是人类能够掌握的最基本的数学工具。整数的全体构成整数集,整数集合是一个数环。在整数系中,自然数为0和正整数的统称,称0为零,称-1、-2、-3、…、-n、… (n为整数)为负整数。正整数、零与负整数构成整数系。 一个给定的整数n可以是负数(n∈Z-),非负数(n∈Z*),零(n=0)或正数(n∈Z+).
我们以0为界限,将整数分为三大类 1.正整数,即大于0的整数如,1,2,3,…,n,… 2.0 既不是正整数,也不是负整数,他是介于正整数和负整数的数 3.负整数,即小于0的整数如,-1,-2,-3,…,-n,…
6、 奇数与偶数
奇数(英文:odd)数学术语 , 整数中,能被2整除的数是偶数,不能被2整除的数是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数。 奇数包括正奇数、负奇数。
关于奇数和偶数,有下面的性质: (1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数。 (2)奇数跟奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数。 (3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数。 (4)若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。 (5)n个奇数的乘积是奇数,n个偶数的乘积是偶数;顺式中有一个是偶数,则乘积是偶数,即:A*B*C*…*偶数*X*Y=偶数,式中A、B、C、…X、Y皆为整数,公式可简化为:奇数*偶数=偶数。 (6) 奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8.(0是个特殊的偶数。2002年国际数学协会规定,零为偶数.我国2004年也规定零为偶数。小学规定0为最小的偶数,但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了.) (7)奇数的平方除以8余1
7、 基数
在数学上,基数(cardinal number)也叫势(cardinality),指集合论中刻画任意集合所含元素数量多少的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一 一对应,是两个对等的集合。此外还有语言学和军事上的基数。
8、 浮点数
浮点数是属于有理数中某特定子集的数的数字表示,在计算机中用以近似表示任意某个实数。具体的说,这个实数由一个整数或定点数(即尾数)乘以某个基数(计算机中通常是2)的整数次幂得到,这种表示方法类似于基数为10的科学记数法。
9、 布尔值
布尔值是 true 或 false 中的一个。动作脚本也会在适当时将值 true 和 false 转换为 1 和 0。布尔值经常与动作脚本语句中通过比较控制脚本流的逻辑运算符一起使用。

Ⅲ 考研的数学分的什么数一,数二,数三的是怎么回事啊

数学一包括:高数,线性代数,概率论与数理统计
数学二包括:高数和线性代数
数学三包括:微积分,线性代数,概率论与数理统计
数学四包括:微积分,线性代数和概率论
数一数二是理工类的,数三数四是经济类的

研究生入学考试中,数学是比较特殊的一门,它兼具专业课和公共课的双重性质,是工学、经济学、管理学等学科专业硕士研究生入学考试的必考科目,考查内容涉及高等数学、概率统计以及线性代数三个部分,分为四个类型,即数学一、数学二、数学三以及数学四,分别对应对数学要求不同的专业。四个不同类型的考试范围、难度和侧重点不同,例如:数学二不考概率统计,数学一以外高等数学考察内容较少,数学三和数学四对概率统计要求较高。因此,首先考生应该明确自己欲报专业对数学的要求,以便有针对性地进行复习。对于大多数需要考3门公共课的考生来说,数学相对于另外两门是最难学也最难考的,也因此,历年来数学在3门公共课各自的平均分中几乎都是最低的。

大学考研所说的数学一、二、三和四
是根据考研大纲来的,具体内容可以参考每年的考研大纲
他具体描述了一、二、三和四考试内容
一般是一,考试范围最广,越到后面考试范围越小
但这并不是等同于考试的难易,有时候数一并不比数四考试难多少!
工学类各专业的数学(一)、数学(二),经济学类各专业的数学(三)、数学(四)。
金融专业考数几,要根据具体学校来,有的数三,有的数四。

一最难,其次就是三。
一、二是理工类,一考高数、线代、和概率三门。二不考概率,高数也考得较少,复习起来相对轻松。
三、四是经济类,他们的高数都考的比较少,叫微积分,不过偏重于概率(比一还多),四考的要少于三,不过具体区别我不大清楚。

Ⅳ 数学中数的几种分类

常用的就数系中的那些吧,复数C分实数R和虚数、实数分有理数Q和无理数、有理数分整数Z、分数和零。
自然数和奇数、偶数等等都是特定的集合。

Ⅳ 数学上的数字都分为哪些:比如自然数、素数、合数等

最大的数字集合:复数集
复数集分为:实数集和虚数集
实数集分为:代数数集合和超越数集合
代数数集分为:有理数集和代数无理数集
代数无理数集加上超越数集合称无理数集
有理数集分为:整数集和小数集
整数集分为:正整数集和零和负整数集
正整数集合加上零合称自然数集或者非负整数集
正整数集分为:素数集和合数集
整数集还可以分为:奇数集和偶数集
以上实数集、有理数集也可以按正负分类

Ⅵ 数学的分类

数学的分支可以按照
“数”、“形”、“结构”、“变化”等研究性质来划分。在这种体系下,代数(包括数论)、几何(包括拓扑)、分析是三大基础性分支,概率统计、计算数学、应用数学、离散数学是派生性分支,此外,还有一个数学史、数学哲学、数学教育等研究数学学科本身的分支。
1.数学教育学
2.数学史
3.数学哲学
4.纯粹数学
数学基础
数理逻辑
集合论
模型论
证明论
递归论
组合
组合计数
图论
拟阵论
组合设计
代数组合
代数
范畴论
格论
半群论
群论
环论
域论
模论
线性代数
表示理论
交换代数
结合代数
李代数
其它
非结合代数
同调代数
计算代数
拓扑
点集拓扑
代数拓扑
微分拓扑
几何拓扑
纽结论
数学分析
复分析
实分析
测度论
泛函分析
算子理论
调和分析
傅里叶分析
微分学
积分学
多变量微积分
常微分方程
偏微分方程
数值分析

Ⅶ 数学分几大类

数学分26大类:

1、数学史

2、数理逻辑与数学基础:演绎逻辑学(也称符号逻辑学),证明论(也称元数学),递归论 ,模型论 ,公理集合论 ,数学基础 ,数理逻辑与数学基础其他学科。

3、数论:初等数论,解析数论,代数数论 ,超越数论,丢番图逼近,数的几何,概率数论,计算数论,数论其他学科。

4、代数学:线性代数,群论,域论,李群,李代数,Kac-Moody代数,环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等),模论,格论,泛代数理论,范畴论,同调代数,代数K理论,微分代数,代数编码理论,代数学其他学科。

5、代数几何学

6、几何学:几何学基础,欧氏几何学,非欧几何学(包括黎曼几何学等),球面几何学,向量和张量分析,仿射几何学,射影几何学,微分几何学,分数维几何,计算几何学,几何学其他学科。

7、拓扑学:点集拓扑学,代数拓扑学,同伦论,低维拓扑学,同调论,维数论,格上拓扑学,纤维丛论,几何拓扑学,奇点理论,微分拓扑学,拓扑学其他学科。

8、数学分析:微分学,积分学,级数论 ,数学分析其他学科。

9、非标准分析

10、函数论:实变函数论 ,单复变函数论,多复变函数论,函数逼近论 ,调和分析 ,复流形,特殊函数论,函数论其他学科。

11、常微分方程:定性理论,稳定性理论 ,解析理论 ,常微分方程其他学科。

12、偏微分方程:椭圆型偏微分方程,双曲型偏微分方程,抛物型偏微分方程,非线性偏微分方程 ,偏微分方程其他学科。

13、动力系统:微分动力系统,拓扑动力系统,复动力系统 ,动力系统其他学科。

14、积分方

15、泛函分析:线性算子理论,变分法,拓扑线性空间,希尔伯特空间,函数空间,巴拿赫空间 ,算子代数,测度与积分,广义函数论,非线性泛函分析,泛函分析其他学科。

16、计算数学:插值法与逼近论,常微分方程数值解 ,偏微分方程数值解,积分方程数值解,数值代数,连续问题离散化方法,随机数值实验,误差分析,计算数学其他学科。

17、概率论:几何概率,概率分布,极限理论,随机过程(包括正态过程与平稳过程、点过程等) ,马尔可夫过程,随机分析,鞅论,应用概率论(具体应用入有关学科),概率论其他。

18、数理统计学:抽样理论(包括抽样分布、抽样调查等 ),假设检验 ,非参数统计,方差分析 ,相关回归分析 ,统计推断,贝叶斯统计(包括参数估计等),试验设计,多元分析,统计判决理论,时间序列分析,数理统计学其他学科。

19、应用统计数学:统计质量控制 ,可靠性数学 ,保险数学,统计模拟。

20、应用统计数学其他学科

21、运筹学:线性规划,非线性规划,动态规划,组合最优化 ,参数规划,整数规划,随机规划 ,排队论,对策论,也称博弈论,库存论,决策论,搜索论,图论 ,统筹论,最优化,运筹学其他学科。

22、组合数学

23、模糊数学

24、量子数学

25、应用数学(具体应用入有关学科)

26、数学其他学科

Ⅷ 数学分类有哪些

数学一般可分为初等数学和高等数学。初等数学就是高中及其以前学的数学内容,那些都是数学的皮毛;高等数学是大学开始接触的,它是以微积分为基础的数学研究模式,可以说微积分的发明是人类历史上最伟大的发明,如果没微积分的话,估计我们还生活在几百年前。当然数学还有很多分支,比如概率和数理统计,线性代数,解析几何,离散数学,复变函数,黎曼几何,拓补学,还有比较新兴的模糊数学(模糊数学是智能计算机的基础)……当然还有很多,但敝人知识空间有限,只涉猎了这么点,只能帮你提供这些了。(补充一点,数学物理方程其实就是偏微分方程(组)的求解问题。它只是数学在物理上的简单运用,我觉得应该不算是数学的一个分类)

Ⅸ 数学分为哪几类

数学可以分为:数论、代数学、代数几何学、几何学、拓扑学、数学分析、非标准分析、函数论、常微分方程、偏微分方程、动力系统、积分方程、泛函分析、计算数学、概率论数理统计学、应用统计数学、应用统计数学其他学科、运筹学、组合数学 、模糊数学、量子数学、应用数学等等。

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,但当时的代数学和几何学长久以来仍处于独立的状态。

代数学可以说是最为人们广泛接受的“数学”,可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。

(9)数学分什么数扩展阅读

相关定理

1、李善兰恒等式:数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李善兰恒等式”(或李氏恒等式)。

2、华氏定理:数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。

3、苏氏锥面:数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”。

4、熊氏无穷级:数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”。

5、陈示性类:数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”。

6、周氏坐标:数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。

阅读全文

与数学分什么数相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:748
乙酸乙酯化学式怎么算 浏览:1413
沈阳初中的数学是什么版本的 浏览:1367
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:896
数学c什么意思是什么意思是什么 浏览:1424
中考初中地理如何补 浏览:1314
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1404
如何回答地理是什么 浏览:1038
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1495
二年级上册数学框框怎么填 浏览:1715
西安瑞禧生物科技有限公司怎么样 浏览:1013
武大的分析化学怎么样 浏览:1257
ige电化学发光偏高怎么办 浏览:1346
学而思初中英语和语文怎么样 浏览:1670
下列哪个水飞蓟素化学结构 浏览:1433
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1073