A. d代表什么在数学或物理上
数学上,d就是微分的意思。Δx趋于无穷小时.在定积分定义的理解中,曲线f(x)和x轴围的面积,所以dx可以看成是区间在[a,b]上任意(等分比较方便)划分的小方块的底边,当dx为无穷小的时候,就可以把这个小方块的高当作f(x)来理解了(可取划分的小区间的左端点,右端点等).这样一个曲边梯形的面积跟以dx为底,f(x)为高的矩形面积的差总可以小于任意正实数.所以他们的乘积f(x)dx就是y的微分dy.
物理上不懂
B. 请问高等数学中“dx”和“dy”的那个“d”是什么意思
d:没有意义,可以理解为微分符号,后跟微分变量.如d(x^2)表示函数x^2的微分
dx:其一、可以理解为对于变量x的微分;其二、由于x通常作为自变量,因此也可以理解为对自变量x的微分(即对x轴的微分量)
d/dx:没有意义,可以理解为某个函数对于变量x的导数(也叫微商,即微分的商),后跟微分函数.如:(d/dx)(x^2)表示函数x^2对于变量x的导数
dy/dx:表示关于x的函数y对自变量x的导数,再不会引起混淆的前提下也可以表示为y
C. 小学数学几何中d代表圆的什么
小学数学几何中d代表圆的直径。
直径,是指通过一平面图形或立体(如圆、圆锥截面、球、立方体)中心到边上两点间的距离
(3)d代表什么数学扩展阅读
直径的性质
性质一:在同一个圆中直径的长度是半径的2倍,可以表示d=2r或r=d/2。
性质二:在同一个圆中直径是最长的弦。
性质三:直径所在的直线是圆的对称轴。
性质四:直径的两个端点在圆上,圆心是直径的中点。
D. 数学公式中的d代表什么意思
d代表微分,求导,即differential
dQ/dP表示Q的函数对变量P求导
E. d在数学里代表什么
1、d的意思为“圆的直径”,R为圆的半径.
2、dm表示分米,cm表示厘米
F. 数学中,D表示什么意思
数学中,D表示【直径】
G. 请问高等数学中dx dy的那个d是什么意思
高等数学中dx dy的那个d意思是微分。
设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不随Δx改变的常量,但A可以随x改变)。
而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。
推导:
设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。 AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。
微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。得出: 当△x→0时,△y≈dy。 导数的记号为:(dy)/(dx)=f′(X)。
H. 在数学中r表示什么d表示什么
这个字母可以代表很多意义,一般来说r代表半径,d代表直径或者距离
I. d是什么意思数学
数学d是微分的意思,由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
微分概念是在解决直与曲的矛盾中产生的,在微小局部可以用直线去近似替代曲线,它的直接应用就是函数的线性化。微分具有双重意义:它表示一个微小的量,因此就可以把线性函数的数值计算结果作为本来函数的数值近似值,这就是运用微分方法进行近似计算的基本思想
J. d在数学中表示什么
在几何中表示圆的直径,也可以表示未知数或参数。还可以表示对一个函数进行微分。(dy=f'(x)dx)