A. 高考文科考试包括哪几门啊
高中文科有语文、文科数学、英语、政治、历史、地理六科。
在传统高考省份高考是分文科,理科的。 一般是在高中二年级分科的。文科学习课程有:语文,数学,英语,政治,历史,地理。 理科学习课程有:语文,数学,英语,物理,化学,生物。
可从自身实际情况考虑,根据每次考试取得好成绩的科目中,来选择文科和理科。其次,可从未来自己从事的职业来考虑,如果在上高中时就已经想到了自己未来会从事什么职业,就可根据你选择的职业的需要,来选择文科还是理科。
高中选文理科的方法:
首先要弄明白文科和理科的含义、科目及以后的发展方向。在高中阶段参加高考的文科科目包括语文、数学、外语、政治、历史、地理等六科,理科包括语文、数学、外语、物理、化学、生物等六科。
从科目上可以看到文、理科都包含语、数、外三科,但文科数学要求相对容易些。因此,对政、史、地或理、化、生的学习水平和兴趣,就是选文、选理的一个重要依据。
B. 高考数学文科范围
文科数学
一、知识要求
知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列 1 和系列 4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.
各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.
对知识的要求依次是了解、理解、掌握三个层次.
1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.
这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.
2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.
这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用
等.
3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.
这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.
二、能力要求
能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.
1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.
空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.
2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.
抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.
3.推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.
中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.
4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.
运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.
5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.
数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.
6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.
7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.
创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.
三、个性品质要求
个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.
要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.
四、考查要求
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.
1.对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.
2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.
3.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.
对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.
4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.
5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.
数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.
Ⅱ.考试范围与要求
本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系
列 1 的内容;选考内容为《课程标准》的选修系列 4 的“坐标系与参数方程”、“不等式选讲”等 2 个专题.
必考内容
(一) 集合
1.集合的含义与表示
(1)了解集合的含义、元素与集合的属于关系.
(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. 2.集合间的基本关系
(1)理解集合之间包含与相等的含义,能识别给定集合的子集.
(2)在具体情境中,了解全集与空集的含义.
3.集合的基本运算
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
(3)能使用韦恩(Venn)图表达集合的关系及运算.
(二) 函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)
1.函数
(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)
表示函数.
(3)了解简单的分段函数,并能简单应用.
(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.
(5)会运用函数图像理解和研究函数的性质.
2.指数函数
(1)了解指数函数模型的实际背景.
(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.
(4)知道指数函数是一类重要的函数模型.
C. 高中数学文科与理科具体有什么区别主要是考试内容方面
文科数学与理科数学区别:
1、从难易程度看,高考理科数学要难于高考文科数学;
2、从内容方面看,高考理科数学考的比较全面,高考文科数学有些内容不考,具体不同点,要看当年的考试大纲;
3、从分数来看,目前二者是一样的,但有些省份2007年二者分数也不一样了,文科数学150分,理科数学200分(相应文科语文200分,理科语文150分)。
文科又称人文社会科学。顾名思义,以人类社会独有的政治、经济、文化等为研究对象的学科。
理科(science departments)一般是指自然科学、应用科学以及数理逻辑的统称,与文科相对立。理科学科主要有有:数学、物理学、化学、生物学、计算机软件应用、技术与设计实践等。理科的诞生与发展是人类智慧发展的结果,标志着人类真正懂得了思考自然,因此理科的发展也是人类科学与自然思维发展的关键。
D. 文科指哪些科目
文科和理科的科目分别有哪些
2018-12-31 08:25:16
文/叶丹
高考文科考语文、数学、英语、历史、地理、政治六科,理科考语文、数学、英语、物理、化学、生物六科。高考改革以后,语文、数学、英语三科必考,其余三科从政史地物化生六科当中任选三科。
1高考文科和理科考哪几科
文、理科共有的学科:语文、数学和英语
文科独有的学科:历史、地理和政治
理科独有的学科:物理、化学和生物
1、文科的数学比理科的数学少学一些知识点,所以文科数学比理科数学简单一些。
2、高考改革后,考生的高考统考科目将只有语文,数学和英语,英语科目可以考两次,取最好的一次成绩计入高考分数。
3、高考改革后,将取消文理分科,考生要在六个学业水平考试科目中,按照报考院校及报考专业的要求自选三个科目参加高考录取。
2高考实行3+X政策
即文理都考语文、数学、外语。但是文科数学和理科数学题目略有不同,文科通常更简单,语文数学卷子一样。三门分别150分。
x代表综合,文科综合为政治、历史、地理合卷,满分300分
理科综合为物理、化学、生物合卷,满分300分
综上所述:
文科:语文150分,文科数学150分,英语150分,文科综合300分,满分750分。
理科:语文150分,理科数学150分,英语150分,理科综合300分,满分750分。
3文科理科区别在哪里
学文科的说文科好,学理科的说理科好。其实他们各有所长各有所短。
学文的,以后可跟经济、教育、法律、新闻、汉文、管理、导游、考古以及一些软件开发等打交道理论性强点;而理科主要是跟现实生活中的吃、用、行、以及科学研究等方面打交道,实用性强点。
文,主要是培养管理型人才;理,主要是培养实干型人才;二者缺一不可。
文的主要课程是语文、文科数学、英语、历史、地理、政治。(高二分科后,物理、化学、生物也还有课程只是讲的比较粗,一个星期大概都只有一节课)
理,主要课程是理科数学、生物、物理、化学(其他都一样)
文理其实都不难,但是都要勤于思考。
E. 高中文科数学高考范围有哪些
高中文科数学高考范围有三角函数、向量、概率与统计、立体几何、数列、圆锥曲线、函数、导数与不等式等。
1、三角函数、向量、解三角形
(1)三角函数画图、性质、三角恒等变换、和与差公式。(2)向量的工具性。(3)正弦定理、余弦定理、解三角形背景。
2、概率与统计
(1)古典概型。(2)茎叶图。(3)直方图。(4)回归方程(2x2列联表)。(5)(理)概率分布、期望、方差、排列组合。
3、立体几何
(1)平行。(2)垂直。(3)角a:异面直线角b:(理)二面角、线面角。(4)利用三视图计算面积与体积。
4、数列
(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。(2)错位相减法、裂项求和法。(3)应用题。
5、圆锥曲线(椭圆)与圆
(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。(2)圆的方程,圆与直线的位置关系。
6、函数、导数与不等式
(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。(2)利用基本不等式、对勾函数性质。
三角函数/数列:一般全国卷第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。
概率:一般全国卷第18题会考概率题。概率题相对比较简单,也是必须得分的题,主要还是对作图和识图能力考查比较多。
解析几何:一般全国卷第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。
F. 高考文科数学和理科数学是不是考一样的
文科和理科数学考的不同
1、从书本数量上来看,文科和理科都有5本必修书,而文科的选修是4本,理科的选修是5本。也就是说,理科要比文科多学一本数学书。
2、从难易程度上来说,不管是平时的学习还是高考,文科的内容都比理科的略微简单一些。
平时学习的时候,有的知识理科要求掌握,而文科只要求了解。就比如抛物线。
3、文科不学的知识有:空间向量、微积分、数学归纳法、排列组合、二项式定理、随机变量。
普通高考报名是先网上填报信息,再现场确认(确认信息表是否正确,照相,签字,领取准考证),网上缴费,三个步骤。
未网上缴费者现场确认的信息无效。艺体类的考生除了要缴纳高考报名费,还需要缴纳艺体专业类的报名考试费用。未缴纳费用者不得参加专业考试,其产生的一切后果由考生自行负责。
高中应届毕业生由招生办统一负责注册信息,社会考生由自己在网上填报信息,自己去招办现场确认。异地考生如果想要在就读的省份报名,也请按照社会考生的报名步骤来进行。省教育考试院在每年的10月中旬左右开放高考报名网站,有意报名者可以在此期间报名。
G. 高考文科和理科各有哪些科目
文、理科共有的学科:语文、数学和英语
文科独有的学科:历史、地理和政治
理科独有的学科:物理、化学和生物
1、文科的数学比理科的数学少学一些知识点,所以文科数学比理科数学简单一些。
2、高考改革后,考生的高考统考科目将只有语文,数学和英语,英语科目可以考两次,取最好的一次成绩计入高考分数。
3、高考改革后,将取消文理分科,考生要在六个学业水平考试科目中,按照报考院校及报考专业的要求自选三个科目参加高考录取。
(7)考文科数学是什么扩展阅读
高考实行3+X政策;即文理都考语文、数学、外语。但是文科数学和理科数学题目略有不同,文科通常更简单,语文数学卷子一样。三门分别150分。x代表综合,文科综合为政治、历史、地理合卷,满分300分理科综合为物理、化学、生物合卷,满分300分。
综上所述:
文科:语文150分,文科数学150分,英语150分,文科综合300分,满分750分。
理科:语文150分,理科数学150分,英语150分,理科综合300分,满分750分。
H. 文科数学高考重点是哪些
文科数学高考重点是解析几何、三角函数、数列、圆、坐标系与参数方程、不等式、概率。
参数方程主要考查轨迹方程计算方法、三角换元求最值、极坐标方程和直角坐标方程转化等。概率题相对比较简单,也是必须得分的题,这道题主要频数分布表、频率分布直方图、回归方程的求法、概率计算、相关系数的计算等等。主要还是对作图和识图能力考查比较多。
三角形勾股定理和关于三角形的证明题,在论证三角形全等、三角形相似等问题时,对应点或者对应边容易出错。注意边边角(SSA)不能证两个三角形全等。
圆包括号、弦、圆周角等,以及相关的公式及其变化,这些都是基本的。圆与圆相切有内切和外切两种状况,相交也存在两圆圆心在公共弦同侧和异侧两种状况,其次圆周角定理是重点,同弧(等弧)所对的圆周角持平,直径所对的圆周角是直角,90度的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。
I. 文科的数学都考什么啊
集合与命题;不等式;矩阵与行列式;算法;数列与数学归纳法;指数函数、对数函数;三角比;三角函数;平面向量;平面直线;圆锥曲线;立体几何;简单几何体;排列组合、二项式定理;概率统计初步;复数初步;
以上为文理科都考的
生活中的概率与统计;数学与文化艺术;投影与画图;简单的线性规划。
以上为文科要求
以上摘自《全国普通高等学校招生统一考试
上海卷考试手册》
我对文科的要求不是很了解,毕竟我是选理的
应该差不多才对……
J. 读文科为什么要考数学,难道文科跟数学有什么联系
选了文科
你高考不用考物理化学生物
这几门课对于文科生的要求是参加会考
(会考的难度是很低的
对于重点高中的学生来说
考a是应该做的事)
数学是一定要考的
高考的时候
无论是文科还是理科
语数英都是一定要考的
但是文科生和理科生的高考数学试卷是不一样的
理科生的数学试卷比较难
理科的试卷能做120
文科的已经可以做150
你现在还想不要想那么多
不管你学文科还是理科
数学都是相当重要的额一门课
也是拉分大课